Discussiones Mathematicae Graph Theory 33(4) (2013)
771-784

doi: 10.7151/dmgt.1710

Elliot Krop
Department of Mathematics, Clayton State University | Irina Krop
DePaul University |

**Keywords:** Ramsey theory, generalized Ramsey theory, rainbow-coloring, edge-coloring, Erdös problem

**2010 Mathematics Subject Classification:** 05A15, 05C38, 05C55.

[1] | M. Axenovich, A generalized Ramsey problem, Discrete Math. 222 (2000) 247--249, doi: 10.1016/S0012-365X(00)00052-2 . |

[2] | M. Axenovich, Z. Füredi and D. Mubayi, On generalized Ramsey theory: the bipartite case, J. Combin. Theory (B) 79 (2000) 66--86, doi: 10.1006/jctb.1999.1948 . |

[3] | R. Diestel, Graph Theory, Third Edition (Springer-Verlag, Heidelberg, Graduate Texts in Mathematics, Volume 173, 2005).. |

[4] | P. Erdös, Solved and unsolved problems in combinatorics and combinatorial number theory, Congr. Numer. 32 (1981) 49--62. |

[5] | P. Erdös and A. Gyárfás, A variant of the classical Ramsey problem, Combinatorica 17 (1997) 459--467, doi: 10.1007/BF01195000 . |

[6] | J. Fox and B. Sudakov, Ramsey-type problem for an almost monochromatic , SIAM J. Discrete Math. K_{4} 23 (2008) 155--162, doi: 10.1137/070706628 . |

[7] | S. Fujita, C. Magnant and K. Ozeki, Rainbow generalizations of Ramsey theory: A survey, Graphs Combin. 26 (2010) 1--30, doi: 10.1007/s00373-010-0891-3 . |

[8] | A. Kostochka and D. Mubayi, When is an almost monochromatic , Combin. Probab. Comput. K guaranteed?_{4} 17 (2008) 823--830, doi: 10.1017/S0963548308009413 . |

[9] | D. Mubayi, Edge-coloring cliques with three colors on all four cliques, Combinatorica 18 (1998) 293--296, doi: 10.1007/PL00009822 . |

[10] | R. Wilson, Graph Theory, Fourth Edition (Prentice Hall, Pearson Education Limited, 1996).. |

Received 6 December 2012

Revised 21 September 2012

Accepted 21 September 2012