Discussiones Mathematicae Graph Theory 33(4) (2013)
677-693

doi: 10.7151/dmgt.1688

Ralph J. Faudree
Department of Mathematical Sciences | Ronald J. Gould
Department of Math and Computer Science | Michael S. Jacobson
Department of Mathematical and Statistical Sciences |

**Keywords:** saturated graphs, sparse graphs, weak saturation

**2010 Mathematics Subject Classification:** 05C35.

[1] | M. Borowiecki and E. Sidorowicz, Weakly , Discuss. Math. Graph Theory P-saturated graphs 22 (2002) 17--22, doi: 10.7151/dmgt.1155 |

[2] | B. Bollobás, Weakly , Beiträge ur Graphentheorie, Kolloquium, Manebach, 1967 (Teubner, Leipig, 1968) 25--31.k-saturated graphs |

[3] | G. Chartrand and L. Lesniak, Graphs and Digraphs (Chapman and Hall, London, 2005). |

[4] | P. Erdös, Z. Füredi and Zs. Tuza, Saturated , Discrete Math. r-uniform hyperegraphs 98 (1991) 95--104, doi: 10.1016/0012-365X(91)90035-Z. |

[5] | P. Erdös, A. Hajnal and J.W. Moon, A problem in graph theory, Amer. Math. Monthly 71 (1964) 1107--1110, doi: 10.2307/2311408. |

[6] | J.R. Faudree, R.J. Faudree and J. Schmitt, A survey of minimum saturated graphs Electron. J. Combin. DS19 (2011) 36 pages. |

[7] | J.R. Faudree, R.J. Faudree, R.J. Gould and M.S. Jacobson, Saturation numbers for trees, Electron. J. Combin. 16 (2009). |

[8] | L. Kászonyi and Zs. Tuza, Saturated graphs with minimal number of edges, J. Graph Theory 10 (1986) 203--210, doi: 10.1002/jgt.3190100209 . |

[9] | L. Lovász, Flats in matroids and geometric graphs, Combinatorial Surveys (Proc. Sixth British Combinatorial Conf.), Royal Holloway Coll., Egham (Academic Press, London, 1977) 45--86. |

[10] | O. Pikhurko, Weakly saturated hypergraphs and exterior algebra, Combin. Probab. Comput. 10 (2001) 435--451, doi: 10.1017/S0963548301004746. |

[11] | E. Sidorowicz, Size of weakly saturated graphs, Discrete Math. 307 (2007) 1486--1492, doi: 10.1016/j.disc.2005.11.085. |

[12] | L. Taylor Ollmann, , in: Proceedings of the Third Southeastern Conference on Combinatorics, Graph Theory, and Computing (Florida Atlantic Univ., Boca Raton, Fla.) (1972), 367--392.K saturated graphs with a minimal number of edges_{2,2} |

[13] | Zs. Tuza, Extremal Problems on saturated graphs and hypergraphs, Ars Combin. 25B (1988) Eleventh British Combinatorial Conference (London (1987)), 105--113. |

[14] | Zs. Tuza, Asymptotic growth of sparse saturated structures is locally determined, Discrete Math. 108 (1992) 397--402, doi: 10.1016/0012-365X(92)90692-9. |

Received 27 January 2012

Revised 9 August 2012

Accepted 9 August 2012