Discussiones Mathematicae Graph Theory 33(4) (2013)
637-648

doi: 10.7151/dmgt.1691

Gurusamy Rengasamy Vijayakumar
School of Mathematics |

**Keywords:** generalized line graph, enhanced line graph, representation of a graph, extended line graph, least eigenvalue of a graph

**2010 Mathematics Subject Classification:** 05C75, 05C63.

[1] | L.W. Beineke, Characterization of derived graphs, J. Combin. Theory 9 (1970) 129--135, doi: 10.1016/S0021-9800(70)80019-9. |

[2] | P.J. Cameron, J.M. Goethals, J.J. Seidel and E.E. Shult, Line graphs, root systems, and elliptic geometry, J. Algebra 43 (1976) 305--327, doi: 10.1016/0021-8693(76)90162-9. |

[3] | P.D. Chawathe and G.R. Vijayakumar, A characterization of signed graphs represented by root system , European J. Combin. D_{∞} 11 (1990) 523--533. |

[4] | D. Cvetković, M. Doob and S. Simić, Generalized line graphs, J. Graph Theory 5 (1981) 385--399, doi: 10.1002/jgt.3190050408. |

[5] | D. Cvetković, P. Rowlinson and S. Simić, Graphs with least eigenvalue , Des. Codes Cryptogr. -2: a new proof of the 31 forbidden subgraphs theorem 34 (2005) 229--240, doi: 10.1007/s10623-004-4856-5. |

[6] | F. Hirsch and G. Lacombe, Elements of Functional Analysis (Springer-Verlag, New York, 1999). |

[7] | A.J. Hoffman, On graphs whose least eigenvalue exceeds , Linear Algebra Appl. -1-√2 16 (1977) 153--165, doi: 10.1016/0024-3795(77)90027-1. |

[8] | J. Krausz, Démonstration nouvelle d'une théorème de Whitney sur les réseaux, Mat. Fiz. Lapok 50 (1943) 75--89. |

[9] | S.B. Rao, N.M. Singhi and K.S. Vijayan, The minimal forbidden subgraphs for generalized line graphs, Combinatorics and Graph Theory, Calcutta, 1980 S.B. Rao, Ed., Springer-Verlag, Lecture Notes in Math. 885 (1981) 459--472. |

[10] | A. Torgašev, A note on infinite generalized line graphs, in: Proceedings of the Fourth Yugoslav Seminar on Graph Theory, Novi Sad, 1983, ed(s), D. Cvetković, I. Gutman, T. Pisanski, and R. Tošić Univ. Novi Sad, 1984) 291--297. |

[11] | A. Torgašev, Infinite graphs with the least limiting eigenvalue greater than , Linear Algebra Appl. -2 82 (1986) 133--141, doi: 10.1016/0024-3795(86)90146-1. |

[12] | A.C.M. van Rooij and H.S. Wilf, The interchange graphs of a finite graph, Acta Math. Acad. Sci. Hungar. 16 (1965) 263--269, doi: 10.1007/BF01904834. |

[13] | G.R. Vijayakumar, A characterization of generalized line graphs and classification of graphs with least eigenvalue≥-2, J. Comb. Inf. Syst. Sci. 9 (1984) 182--192. |

[14] | G.R. Vijayakumar, Equivalence of four descriptions of generalized line graphs, J. Graph Theory 67 (2011) 27--33, doi: 10.1002/jgt.20509. |

[15] | D.B. West, Introduction to Graph Theory, Second Edition (Prentice Hall, New Jersey, USA, 2001). |

Received 28 December 2011

Revised 15 July 2012

Accepted 16 July 2012