Discussiones Mathematicae Graph Theory 33(3) (2013)
521-530

doi: 10.7151/dmgt.1690

Július Czap
Department of Applied Mathematics and Business Informatics | Zsolt Tuza
Alfréd Rényi Institute of Mathematics |

**Keywords:** plane graph, parity partition, edge coloring

**2010 Mathematics Subject Classification:** 05C10, 05C15.

[1] | J. Czap, S. Jendrol', F. Kardoš and R. Soták, Facial parity edge coloring of plane pseudographs, Discrete Math. 312 (2012) 2735--2740, doi: 10.1016/j.disc.2012.03.036. |

[2] | J. Czap and Zs. Tuza, Partitions of graphs and set systems under parity constraints, preprint (2011). |

[3] | D. Gonçalves, Edge partition of planar graphs into two outerplanar graphs, Proceedings of the 37th Annual ACM Symposium on Theory of Computing (2005) 504--512, doi: 10.1145/1060590.1060666. |

[4] | S. Grünewald, {Chromatic index critical graphs and multigraphs}, PhD Thesis, Universität Bielefeld (2000). |

[5] | A. Kotzig, Contribution to the theory of Eulerian polyhedra, Mat.-Fyz. Cas. SAV (Math. Slovaca) 5 (1955) 101--113 (in Slovak). |

[6] | T. Mátrai, Covering the edges of a graph by three odd subgraphs, J. Graph Theory 53 (2006) 75--82, doi: 10.1002/jgt.20170. |

[7] | C.St.J.A. Nash-Williams, Decomposition of finite graphs into forests, J. London Math. Soc. 39 (1964) 12--12, doi: 10.1112/jlms/s1-39.1.12. |

[8] | L. Pyber, Covering the edges of a graph by ..., Colloquia Mathematica Societatis János Bolyai, 60. Sets, Graphs and Numbers (1991) 583--610. |

[9] | D.P. Sanders and Y. Zhao, Planar graphs of maximum degree seven are class I, J. Combin. Theory (B) 83 (2001) 201--212, doi: 10.1006/jctb.2001.2047. |

[10] | V.G. Vizing, On an estimate of the chromatic class of a , Diskret. Analiz p-graph 3 (1964) 25--30. |

[11] | L. Zhang, Every planar graph with maximum degree I, Graphs Combin. 7 is class 16 (2000) 467--495, doi: 10.1007/s003730070009. |

Received 19 October 2011

Revised 11 January 2013

Accepted 14 January 2013