Fractional Q-edge-coloring of Graphs

 Július Czap Department of Applied Mathematics and Business Informatics Faculty of Economics, Technical University of Košice Němcovej 32, SK-040 01 Košice, Slovakia Peter Mihók Department of Applied Mathematics and Business Informatics Faculty of Economics, Technical University of Košice Němcovej 32, SK-040 01 Košice, Slovakia and Mathematical Institute of the Slovak Academy of Sciences Grešákova 6, SK-040 01 Košice, Slovakia

Abstract

An additive hereditary property of graphs is a class of simple graphs which is closed under unions, subgraphs and isomorphism. Let Q be an additive hereditary property of graphs. A Q-edge-coloring of a simple graph is an edge coloring in which the edges colored with the same color induce a subgraph of property Q. In this paper we present some results on fractional Q-edge-colorings. We determine the fractional Q-edge chromatic number for matroidal properties of graphs.

Keywords: fractional coloring, graph property

2010 Mathematics Subject Classification: 05C15, 05C70, 05C72.

References

 [1] J.A. Bondy and U.S.R. Murty, Graph Theory ( Springer, 2008).. [2] M. Borowiecki, A. Kemnitz, M. Marangio and P. Mihók, Generalized total colorings of graphs, Discuss. Math. Graph Theory 31 (2011) 209--222, doi: 10.7151/dmgt.1540. [3] I. Broere, S. Dorfling and E. Jonck, Generalized chromatic numbers and additive hereditary properties of graphs, Discuss. Math. Graph Theory 22 (2002) 259--270, doi: 10.7151/dmgt.1174. [4] M.J. Dorfling and S. Dorfling, Generalized edge-chromatic numbers and additive hereditary properties of graphs, Discuss. Math. Graph Theory 22 (2002) 349--359, doi: 10.7151/dmgt.1180. [5] J. Edmonds, Maximum matching and a polyhedron with 0,1-vertices, J. Res. Nat. Bur. Standards 69B (1965) 125--130.. [6] G. Karafová, Generalized fractional total coloring of complete graphs, Discuss. Math. Graph Theory, accepted.. [7] A. Kemnitz, M. Marangio, P. Mihók, J. Oravcová and R. Soták, Generalized fractional and circular total coloring of graphs, preprint.. [8] K. Kilakos and B. Reed, Fractionally colouring total graphs, Combinatorica 13 (1993) 435--440, doi: 10.1007/BF01303515. [9] P. Mihók, On graphs matroidal with respect to additive hereditary properties, Graphs, Hypergraphs and Matroids II, Zielona Góra (1987) 53--64.. [10] P. Mihók, Zs. Tuza and M. Voigt, Fractional P-colourings and P-choice-ratio, Tatra Mt. Math. Publ. 18 (1999) 69--77.. [11] J.G. Oxley, Matroid Theory (Oxford University Press, Oxford, 1992).. [12] E.R. Scheinerman and D.H. Ullman, Fractional Graph Theory (John Wiley & Sons , 1997).. [13] R. Schmidt, On the existence of uncountably many matroidal families, Discrete Math. 27 (1979) 93--97, doi: 10.1016/0012-365X(79)90072-4. [14] J.M.S. Simões-Pereira, On matroids on edge sets of graphs with connected subgraphs as circuits, Proc. Amer. Math. Soc. 38 (1973) 503--506, doi: 10.2307/2038939.