Discussiones Mathematicae Graph Theory 33(2) (2013)
361-371

doi: 10.7151/dmgt.1670

H.P. Patil and R. Pandiya Raj
Department of Mathematics |

**Keywords:** total graph, central graph, middle graph, Mycielski graph, independence number, covering number, edge independence number, edge covering number, chromatic number, achromatic number

**2010 Mathematics Subject Classification:** 05C76, 05C69.

[1] | F. Harary, Graph Theory ( Narosa Publishing Home, 1969). |

[2] | G.J. Chang, L. Huang and X. Zhu, Circular chromatic numbers of Mycielski's graphs, Discrete Math. 205 (1999) 23--37, doi: 10.1016/S0012-365X(99)00033-3. |

[3] | G. Kortsarz and S. Shende, Approximating the Achromatic Number Problem on Bipartite Graphs, (Springer Berlin / Heidelberg, 2003) LNCS Vol. 2832 385--396. |

[4] | J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (London, MacMillan, 1976). |

[5] | M.M. Ali Akbar, K. Kaliraj and Vernold J. Vivin, On equitable coloring of central graphs and total graphs, Electron. Notes Discrete Math. 33 (2009) 1--6, doi: 10.1016/j.endm.2009.03.001. |

[6] | Ramakrishnan, MPhil-Thesis, (Pondicherry University, Puducherry, India, 1988). |

[7] | Vernold J. Vivin, M. Venkatachalam and M.M. Ali Akbar, A note on achromatic coloring of star graph families, Filomat 23(3) (2009) 251--255, doi: 10.2298/FIL0903251V. |

Received 16 May 2011

Revised 2 May 2012

Accepted 2 May 2012