Discussiones Mathematicae Graph Theory 33(2) (2013)
337-346

doi: 10.7151/dmgt.1669

Mustapha Chellali
LAMDA-RO, Department of Mathematics | Nader Jafari Rad
Department of Mathematics, Shahrood University of Technology |

**Keywords:** Roman domination, independent Roman domination, strong equality, trees

**2010 Mathematics Subject Classification:** 05C69.

[1] | E.J. Cockayne, P.A. Dreyer Jr., S.M. Hedetniemi and S.T. Hedetniemi, On Roman domination in graphs, Discrete Math. 278 (2004) 11--22, doi: 10.1016/j.disc.2003.06.004. |

[2] | T.W. Haynes, M.A. Henning and P.J. Slater, Strong equality of domination parameters in trees, Discrete Math. 260 (2003) 77--87, doi: 10.1016/S0012-365X(02)00451-X. |

[3] | T.W. Haynes, M.A. Henning and P.J. Slater, Strong equality of upper domination and independence in trees, Util. Math. 59 (2001) 111--124. |

[4] | T.W. Haynes and P.J. Slater, Paired-domination in graphs, Networks 32 (1998) 199--206, doi: 10.1002/(SICI)1097-0037(199810)32:3<199::AID-NET4>3.0.CO;2-F . |

[5] | M.A. Henning, A characterization of Roman trees, Discuss. Math. Graph Theory 22 (2002) 325--334, doi: 10.7151/dmgt.1178. |

[6] | M.A. Henning, Defending the Roman Empire from multiple attacks, Discrete Math. 271 (2003) 101--115, doi: 10.1016/S0012-365X(03)00040-2. |

[7] | N. Jafari Rad and L. Volkmann, Changing and unchanging the Roman domination number of a graph, Util. Math. 89 (2012) 79--95. |

Received 8 December 2010

Revised 24 November 2011

Accepted 5 April 2012