Discussiones Mathematicae Graph Theory 33(1) (2013)
147-165

doi: 10.7151/dmgt.1674

*Dedicated to Mietek Borowiecki on the occasion of his seventieth birthday.*

of given order and size

Mirko Horňák Stanislav Jendrol'
Institute of Mathematics | Ingo Schiermeyer
Institut für Diskrete Mathematik und Algebra |

**Keywords:** weight of an edge, weight of a graph, bipartite graph

**2010 Mathematics Subject Classification:** 05C35.

[1] | O.V. Borodin, Computing light edges in planar graphs, in: Topics in Combinatorics and Graph Theory, ed(s), R. Bodendiek and R. Henn Physica-Verlag, Heidelberg, 1990) 137--144. |

[2] | H. Enomoto and K. Ota, Connected subgraphs with small degree sum in , J. Graph Theory 3-connected planar graphs 30 (1999) 191--203, doi: 10.1002/(SICI)1097-0118(199903)30:3<191::AID-JGT4>3.0.CO;2-X. |

[3] | I. Fabrici and S. Jendrol', Subgraphs with restricted degrees of their vertices in planar , Graphs Combin. 3-connected graphs 13 (1997) 245--250. |

[4] | B. Grünbaum, Acyclic colorings of planar graphs, Israel J. Math. 14 (1973) 390--408, doi: 10.1007/BF02764716 . |

[5] | J. Ivančo, The weight of a graph, in: Fourth Czechoslovakian Symposium on Combinatorics, Graphs and Complexity, ed(s), J. Nešetřil and M. Fiedler North-Holland, Amsterdam, 1992) 113--116. |

[6] | J. Ivančo and S. Jendrol', On extremal problems concerning weights of edges of graphs, in: Sets, Graphs and Numbers, ed(s), G. Halász, L. Lovász, D. Miklós and T. Szönyi North-Holland, Amsterdam, 1992) 399--410. |

[7] | E. Jucovič, Strengthening of a theorem about , Geom. Dedicata 3-polytopes 13 (1974) 233--237, doi: 10.1007/BF00183214. |

[8] | S. Jendrol' and I. Schiermeyer, On a max-min problem concerning weights of edges, Combinatorica 21 (2001) 351--359, doi: 10.1007/s004930100001. |

[9] | S. Jendrol', M. Tuhársky and H.-J. Voss, A Kotzig type theorem for large maps on surfaces, Tatra Mt. Math. Publ. 27 (2003) 153--162. |

[10] | A. Kotzig, Contribution to the theory of Eulerian polyhedra, Mat.-Fyz. Časopis. Slovensk. Akad. Vied 5 (1955) 111--113. |

[11] | J. Zaks, Extending Kotzig's theorem, Israel J. Math. 45 (1983) 281--296, doi: 10.1007/BF02804013. |

Received 2 February 2012

Revised 8 January 2012

Accepted 9 January 2012