Discussiones Mathematicae Graph Theory 32(4) (2012)
685-704

doi: 10.7151/dmgt.1638

Jose Cáceres, Ortrud R. Oellermann^{a}^{b}and M.L. Puertas ^{a}
University of Almeria, 04120, Almeria, Spain Department of Mathematics and Statistics., University of Winnipeg, ^{b}515 Portage Ave, Winnipeg, R3B 2E9, Canada |

**Keywords:** minimal trees, monophonic intervals of sets, *k*-monophonic convexity, convex geometries

**2010 Mathematics Subject Classification:** 05C75, 05C12, 05C17, 05C05.

[1] | M. Atici, Computational complexity of geodetic set, Int. J. Comput. Math. 79 (2002) 587--591, doi: 10.1080/00207160210954 . |

[2] | H.-J. Bandelt and H.M. Mulder, Distance-hereditary graphs, J. Combin. Theory (B) 41 (1986) 182--208, doi: 10.1016/0095-8956(86)90043-2. |

[3] | J.M. Bilbao and P.H. Edelman, The Shapley value on convex geometries, Discrete Appl. Math 103 (2000) 33--40, doi: 10.1016/S0166-218X(99)00218-8 . |

[4] | A. Brandst{ä}dt, V.B. Le and J.P. Spinrad, Graph Classes: A survey (SIAM Monogr. Discrete Math. Appl., Philidelphia, 1999). |

[5] | J. Cáceres and O.R. Oellermann, On , Discrete Math. 3-Steiner simplicial orderings 309 (2009) 5825--5833, doi: 10.1016/j.disc.2008.05.047. |

[6] | J. Cáceres, O.R. Oellermann and M.L. Puertas, , arXiv.org 1107.1048, (2011) 1--15.m-convex geometries are _{3}^{3}A-free |

[7] | M. Changat and J. Mathew, Induced path transit function, monotone and Peano axioms, Discrete Math. 286 (2004) 185--194, doi: 10.1016/j.disc.2004.02.017. |

[8] | M. Changat, J. Mathew and H.M. Mulder, The induced path function, monotonicity and betweenness, Discrete Appl. Math. 158 (2010) 426--433, doi: 10.1016/j.dam.2009.10.004. |

[9] | G. Chartrand, L. Lesniak and P. Zhang, Graphs and Digraphs: Fifth Edition (Chapman and Hall, New York, 1996). |

[10] | F.F. Dragan, F. Nicolai and A. Brandstädt, Convexity and , SIAM J. Discrete Math. HHD-free graphs 12 (1999) 119--135, doi: 10.1137/S0895480195321718. |

[11] | M. Farber and R.E. Jamison, Convexity in graphs and hypergraphs, SIAM J. Alg. Discrete Meth. 7 (1986) 433--444, doi: 10.1137/0607049. |

[12] | E. Howorka, A characterization of distance hereditary graphs, Quart. J. Math. Oxford 28 (1977) 417--420, doi: 10.1093/qmath/28.4.417. |

[13] | B. Jamison and S. Olariu, On the semi-perfect elimination, Adv. in Appl. Math. 9 (1988) 364--376, doi: 10.1016/0196-8858(88)90019-X . |

[14] | E. Kubicka, G. Kubicki and O.R. Oellermann, Steiner intervals in graphs, Discrete Math. 81 (1998) 181--190, doi: 10.1016/S0166-218X(97)00084-X . |

[15] | M. Nielsen and O.R. Oellermann, Steiner trees and convex geometries, SIAM J. Discrete Math. 23 (2009) 680--693, doi: 10.1137/070691383. |

[16] | O.R. Oellermann, Convexity notions in graphs (2006) 1--4.http://www-ma2.upc.edu/seara/wmcgt06/. |

[17] | O.R. Oellermann and M.L. Puertas, Steiner intervals and Steiner geodetic numbers in distance hereditary graphs, Discrete Math. 307 (2007) 88--96, doi: 10.1016/j.disc.2006.04.037 . |

[18] | M.J.L. Van de Vel, Theory of convex structures (North-Holland, Amsterdam, 1993). |

Received 11 July 2011

Revised 20 December 2011

Accepted 21 December 2011