Discussiones Mathematicae Graph Theory 32(3) (2012)
449-459

doi: 10.7151/dmgt.1609

S. Arumugam Varughese Mathew^{1,2}, and K. Karuppasamy^{3}^{1}
n-CARDMATH) |

**Keywords:** domination, distance *k*-domination, distance *k*-dominating

function, *k*-packing, fractional distance *k*-domination

**2010 Mathematics Subject Classification:** 05C69, 05C72.

[1] | S. Arumugam, K. Karuppasamy and I. Sahul Hamid, Fractional global domination in graphs, Discuss. Math. Graph Theory 30 (2010) 33--44, doi: 10.7151/dmgt.1474. |

[2] | E.J. Cockayne, G. Fricke, S.T. Hedetniemi and C.M. Mynhardt, Properties of minimal dominating functions of graphs, Ars Combin. 41 (1995) 107--115. |

[3] | G. Chartrand and L. Lesniak, Graphs & Digraphs, Fourth Edition, Chapman & Hall/CRC (2005). |

[4] | G.S. Domke, S.T. Hedetniemi and R.C. Laskar, Generalized packings and coverings of graphs, Congr. Numer. 62 (1988) 259--270. |

[5] | G.S. Domke, S.T. Hedetniemi and R.C. Laskar, Fractional packings, coverings, and irredundance in graphs, Congr. Numer. 66 (1988) 227--238. |

[6] | D.L. Grinstead and P.J. Slater, Fractional domination and fractional packings in graphs, Congr. Numer. 71 (1990) 153--172. |

[7] | E.O. Hare, , Congr. Numer. k-weight domination and fractional domination of P_{m} × P_{n} 78 (1990) 71--80. |

[8] | J.H. Hattingh, M.A. Henning and J.L. Walters, On the computational complexity of upper distance fractional domination, Australas. J. Combin. 7 (1993) 133--144. |

[9] | T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998). |

[10] | T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in graphs: Advanced Topics (Marcel Dekker, New York, 1998). |

[11] | S.M. Hedetniemi, S.T. Hedetniemi and T.V. Wimer, Linear time resource allocation algorithms for trees, Technical report URI -014, Department of Mathematics, Clemson University (1987). |

[12] | A. Meir and J.W. Moon, Relations between packing and covering numbers of a tree, Pacific J. Math. 61 (1975) 225--233. |

[13] | R.R. Rubalcaba, A. Schneider and P.J. Slater, A survey on graphs which have equal domination and closed neighborhood packing numbers, AKCE J. Graphs. Combin. 3 (2006) 93--114. |

[14] | E.R. Scheinerman and D.H. Ullman, Fractional Graph Theory: A Rational Approach to the Theory of Graphs (John Wiley & Sons, New York, 1997). |

[15] | D. Vukičević and A. Klobučar, , Croatica Chemica Acta k-dominating sets on linear benzenoids and on the infinite hexagonal grid 80 (2007) 187--191. |

Received 22 December 2010

Revised 12 August 2011

Accepted 16 August 2011