Discussiones Mathematicae Graph Theory 32(2) (2012)
373-378

doi: 10.7151/dmgt.1606

Terry A. McKee
Department of Mathematics and Statistics |

**Keywords:** cycle extendable graph, chordal graph, chordless graph, minimally *2*-connected graph

**2010 Mathematics Subject Classification:** 05C75, 05C38.

[1] | A. Brandstädt, V.B. Le and J.P. Spinrad, Graph Classes: A Survey (Society for Industrial and Applied Mathematics, Philadelphia, 1999). |

[2] | G.A. Dirac, Minimally , J. Reine Angew. Math. 2-connected graphs 228 (1967) 204--216, doi: 10.1515/crll.1967.228.204. |

[3] | R.J. Faudree, R.J. Gould, M.S. Jacobson and L.M. Lesniak, Degree conditions and cycle extendability, Discrete Math. 141 (1995) 109--122, doi: 10.1016/0012-365X(93)E0193-8. |

[4] | B.Lévêque, F. Maffray and N. Trotignon, On graphs with no induced subdivision of , submitted.K_{4} |

[5] | T.A. McKee, Strongly pancyclic and dual-pancyclic graphs, Discuss. Math. Graph Theory 29 (2009) 5--14, doi: 10.7151/dmgt.1429. |

[6] | T.A. McKee and F.R. McMorris, Topics in Intersection Graph Theory (Society for Industrial and Applied Mathematics, Philadelphia, 1999). |

[7] | M.D. Plummer, On minimal blocks, Trans. Amer. Math. Soc. 134 (1968) 85--94, doi: 10.1090/S0002-9947-1968-0228369-8. |

Received 29 October 2010

Revised 8 June 2011

Accepted 8 June 2011