Discussiones Mathematicae Graph Theory 32(1) (2012)
153-160

doi: 10.7151/dmgt.1593

Mohammad Hailat
Department of Mathematical Sciences |

**Keywords:** *(λ,μ)*-graph, Friendship Theorem

**2010 Mathematics Subject Classification:** 05C75.

[1] | J. Bondy, Kotzig's Conjecture on generalized friendship graphs --- a survey, Annals of Discrete Mathematics 27 (1985) 351--366. |

[2] | P. Erdös, A. Rènyi and V. Sós, On a problem of graph theory, Studia Sci. Math 1 (1966) 215--235. |

[3] | R. Gera and J. Shen, Extensions of strongly regular graphs, Electronic J. Combin. 15 (2008) # N3 1--5. |

[4] | J. Hammersley, The friendship theorem and the love problem, in: Surveys in Combinatorics, London Math. Soc., Lecture Notes 82 (Cambridge University Press, Cambridge, 1989) 127--140. |

[5] | N. Limaye, D. Sarvate, P. Stanika and P. Young, Regular and strongly regular planar graphs, J. Combin. Math. Combin. Compt 54 (2005) 111--127. |

[6] | J. Longyear and T. Parsons, The friendship theorem, Indag. Math. 34 (1972) 257--262. |

[7] | E. van Dam and W. Haemers, Graphs with constant , Discrete Math. μ and μ 182 (1998) 293--307, doi: 10.1016/S0012-365X(97)00150-7. |

[8] | H. Wilf, The friendship theorem in combinatorial mathematics and its applications, Proc. Conf. Oxford, 1969 (Academic Press: London and New York, 1971) 307--309. |

Received 21 May 2010

Revised 1 April 2011

Accepted 1 April 2011