Discussiones Mathematicae Graph Theory 31(2) (2011)
313-320
doi: 10.7151/dmgt.1547
Arnfried Kemnitz
Computational Mathematics | Ingo Schiermeyer
Institut für Diskrete Mathematik und Algebra |
Keywords: edge colouring, rainbow colouring, rainbow connection.
2010 Mathematics Subject Classification: 05C15, 05C35.
[1] | J.A. Bondy and U.S.R. Murty, Graph Theory (Springer, 2008), doi: 10.1007/978-1-84628-970-5. |
[2] | S. Chakraborty, E. Fischer, A. Matsliah and R. Yuster, Hardness and algorithms for rainbow connectivity, Proceedings STACS 2009, to appear in Journal of Combinatorial Optimization. |
[3] | Y. Caro, A. Lev, Y. Roditty, Z. Tuza and R. Yuster On rainbow connection, Electronic J. Combin. 15 (2008) #57. |
[4] | G. Chartrand, G.L. Johns, K.A. McKeon and P. Zhang, Rainbow connection in graphs, Math. Bohemica 133 (2008) 85-98. |
[5] | A.B. Ericksen, A matter of security, Graduating Engineer & Computer Careers (2007) 24-28. |
[6] | M. Krivelevich and R. Yuster, The rainbow connection of a graph is (at most) reciprocal to its minimum degree, J. Graph Theory 63 (2010) 185-191. |
[7] | V.B. Le and Z. Tuza, Finding optimal rainbow connection is hard, preprint 2009. |
[8] | I. Schiermeyer, Rainbow connection in graphs with minimum degree three, IWOCA 2009, LNCS 5874 (2009) 432-437. |
Received 4 December 2009
Revised 12 May 2010
Accepted 12 May 2010