Discussiones Mathematicae Graph Theory 30(4) (2010)
651-661
doi: 10.7151/dmgt.1520
Terry A. McKee
Department of Mathematics and Statistics
Wright State University
Dayton, Ohio 45435, USA
Keywords: Ptolemaic graph, clique graph, chordal graph, clique tree, graph representation.
2010 Mathematics Subject Classification: 05C62, 05C75.
[1] | H.-J. Bandelt and E. Prisner, Clique graphs and Helly graphs, J. Combin. Theory (B) 51 (1991) 34-45, doi: 10.1016/0095-8956(91)90004-4. |
[2] | B.-L. Chen and K.-W. Lih, Diameters of iterated clique graphs of chordal graphs, J. Graph Theory 14 (1990) 391-396, doi: 10.1002/jgt.3190140311. |
[3] | A. Brandstädt, V.B. Le and J.P. Spinrad, Graph Classes: A Survey, Society for Industrial and Applied Mathematics (Philadelphia, 1999). |
[4] | E. Howorka, A characterization of ptolemaic graphs, J. Graph Theory 5 (1981) 323-331, doi: 10.1002/jgt.3190050314. |
[5] | T.A. McKee, Maximal connected cographs in distance-hereditary graphs, Utilitas Math. 57 (2000) 73-80. |
[6] | T.A. McKee and F.R. McMorris, Topics in Intersection Graph Theory, Society for Industrial and Applied Mathematics (Philadelphia, 1999). |
[7] | F. Nicolai, A hypertree characterization of distance-hereditary graphs, Tech. Report Gerhard-Mercator-Universität Gesamthochschule (Duisburg SM-DU-255, 1994). |
[8] | E. Prisner, Graph Dynamics, Pitman Research Notes in Mathematics Series #338 (Longman, Harlow, 1995). |
[9] | J.L. Szwarcfiter, A survey on clique graphs, in: Recent advances in algorithms and combinatorics, pp. 109-136, CMS Books Math./Ouvrages Math. SMC 11 (Springer, New York, 2003). |
Received 17 April 2009
Revised 23 February 2010
Accepted 2 March 2010