Discussiones Mathematicae Graph Theory 30(1) (2010) 95-103
doi: 10.7151/dmgt.1479

[BIBTex] [PDF] [PS]

VERTEX-DISTINGUISHING EDGE-COLORINGS OF LINEAR FORESTS

Sylwia Cichacz  and  Jakub Przybyło

AGH University of Science and Technology
Al. Mickiewicza 30, 30-059 Kraków, Poland
e-mail: przybylo@wms.mat.agh.edu.pl

Abstract

In the PhD thesis by Burris (Memphis (1993)), a conjecture was made concerning the number of colors c(G) required to edge-color a simple graph G so that no two distinct vertices are incident to the same multiset of colors. We find the exact value of c(G) - the irregular coloring number, and hence verify the conjecture when G is a vertex-disjoint union of paths. We also investigate the point-distinguishing chromatic index, χ0(G), where sets, instead of multisets, are required to be distinct, and determine its value for the same family of graphs.

Keywords: irregular edge-coloring, vertex-distinguishing edge-coloring, point-distinguishing chromatic index.

2010 Mathematics Subject Classification: 05C15.

References

[1] M. Aigner and E. Triesch, Irregular assignments and two problems á la Ringel, in: Topics in Combinatorics and Graph Theory, dedicated to G. Ringel, Bodendiek, Henn, eds. (Physica Verlag Heidelberg, 1990) 29-36.
[2] P.N. Balister, Packing Circuits into Kn, Combin. Probab. Comput. 10 (2001) 463-499, doi: 10.1017/S0963548301004771.
[3] P.N. Balister, B. Bollobás and R.H. Schelp, Vertex-distinguishing edge-colorings of graphs with Δ(G) = 2, Discrete Math. 252 (2002) 17-29, doi: 10.1016/S0012-365X(01)00287-4.
[4] A.C. Burris, Vertex-distinguishing edge-colorings (PhD Thesis, Memphis, 1993).
[5] A.C. Burris and R.H. Schelp, Vertex-distiguishing proper edge-colorings, J. Graph Theory 26 (1997) 73-82, doi: 10.1002/(SICI)1097-0118(199710)26:2<73::AID-JGT2>3.0.CO;2-C.
[6] J. Cerný, M. Hornák and R. Soták, Observability of a graph, Math. Slovaca 46 (1996) 21-31.
[7] G. Chartrand, M.S. Jacobson, J. Lehel, O.R. Oellermann, S. Ruiz and F. Saba, Irregular Networks, Congressus Numerantium 64 (1988) 187-192.
[8] S. Cichacz, J. Przybyło and M. Woźniak, Decompositions of pseudographs into closed trails of even sizes, Discrete Math. 309 (2009) 4903-4908, doi: 10.1016/j.disc.2008.04.024.
[9] S. Cichacz, J. Przybyło and M. Woźniak, Irregular edge-colorings of sums of cycles of even lengths, Australas. J. Combin. 40 (2008) 41-56.
[10] F. Harary and M. Plantholt, The point-distinguishing chromatic index, in: Graphs and Applications, Proc. 1st Symp. Graph Theory, Boulder/Colo. 1982, (1985) 147-162.

Received 12 May 2008
Revised 3 April 2009
Accepted 3 April 2009