Discussiones Mathematicae Graph Theory 30(1) (2010) 17-32
doi: 10.7151/dmgt.1473

[BIBTex] [PDF] [PS]


Bostjan Bresar

Faculty of Natural Sciences and Mathematics
University of Maribor, Slovenia
e-mail: bostjan.bresar@uni-mb.si

Manoj Changat

Department of Futures Studies
University of Kerala, Trivandrum-695034, India
e-mail: mchangat@gmail.com

Ajitha R. Subhamathi

Department of Futures Studies
University of Kerala, Trivandrum-695034, India
e-mail: ajithars@gmail.com

Aleksandra Tepeh

Faculty of Electrical Engineering and Computer Science
University of Maribor, Slovenia
e-mail: aleksandra.tepeh@uni-mb.si


The periphery graph of a median graph is the intersection graph of its peripheral subgraphs. We show that every graph without a universal vertex can be realized as the periphery graph of a median graph. We characterize those median graphs whose periphery graph is the join of two graphs and show that they are precisely Cartesian products of median graphs. Path-like median graphs are introduced as the graphs whose periphery graph has independence number 2, and it is proved that there are path-like median graphs with arbitrarily large geodetic number. Peripheral expansion with respect to periphery graph is also considered, and connections with the concept of crossing graph are established.

Keywords: median graph, Cartesian product, geodesic, periphery, peripheral expansion.

2010 Mathematical Subject Classification: 05C12, 05C75.


[1] K. Balakrishnan, B. Bresar, M. Changat, W. Imrich, S. Klavžar, M. Kovse and A.R. Subhamathi, On the remoteness function in median graphs, Discrete Appl. Math. 157 (2009) 3679-3688, doi: 10.1016/j.dam.2009.07.007.
[2] H.-J. Bandelt and V. Chepoi, Graphs of acyclic cubical complexes, European J. Combin. 17 (1996) 113-120, doi: 10.1006/eujc.1996.0010.
[3] H.-J. Bandelt, H.M. Mulder and E. Wilkeit, Quasi-median graphs and algebras, J. Graph Theory 18 (1994) 681-703, doi: 10.1002/jgt.3190180705.
[4] H.-J. Bandelt and M. van de Vel, Embedding topological median algebras in products of dendrons, Proc. London Math. Soc. 58 (1989) 439-453, doi: 10.1112/plms/s3-58.3.439.
[5] H.-J. Bandelt, L. Quintana-Murci, A. Salas and V. Macaulay, The fingerprint of phantom mutations in mitochondrial DNA data, American J. Human Genetics 71 (2002) 1150-1160, doi: 10.1086/344397.
[6] B. Bresar, Arboreal structure and regular graphs of median-like classes, Discuss. Math. Graph Theory 23 (2003) 215-225, doi: 10.7151/dmgt.1198.
[7] B. Bresar and S. Klavžar, Crossing graphs as joins of graphs and Cartesian products of median graphs, SIAM J. Discrete Math. 21 (2007) 26-32, doi: 10.1137/050622997.
[8] B. Bresar and T. Kraner Sumenjak, Cube intersection concepts in median graphs, Discrete Math. 309 (2009) 2990-2997, doi: 10.1016/j.disc.2008.07.032.
[9] B. Bresar and A. Tepeh Horvat, Crossing graphs of fiber-complemented graphs, Discrete Math. 308 (2008) 1176-1184, doi: 10.1016/j.disc.2007.04.005.
[10] B. Bresar and A. Tepeh Horvat, On the geodetic number of median graphs, Discrete Math. 308 (2008) 4044-4051, doi: 10.1016/j.disc.2007.07.119.
[11] M. Chastand, Fiber-complemented graphs, I. Structure and invariant subgraphs, Discrete Math. 226 (2001) 107-141, doi: 10.1016/S0012-365X(00)00183-7.
[12] D. Djoković, Distance preserving subgraphs of hypercubes, J. Combin. Theory (B) 14 (1973) 263-267, doi: 10.1016/0095-8956(73)90010-5.
[13] A. Dress, K. Huber and V. Moulton, Some variations on a theme by Buneman, Ann. Combin. 1 (1997) 339-352, doi: 10.1007/BF02558485.
[14] W. Imrich and S. Klavžar, Product Graphs: Structure and Recognition (Wiley-Interscience, New York, 2000).
[15] W. Imrich, S. Klavžar and H.M. Mulder, Median graphs and triangle-free graphs, SIAM J. Discrete Math. 12 (1999) 111-118, doi: 10.1137/S0895480197323494.
[16] S. Klavžar and M. Kovse, Partial cubes and their τ-graphs, European J. Combin. 28 (2007) 1037-1042.
[17] S. Klavžar and H.M. Mulder, Median graphs: characterizations, location theory and related structures, J. Combin. Math. Combin. Comp. 30 (1999) 103-127.
[18] S. Klavžar and H.M. Mulder, Partial cubes and crossing graphs, SIAM J. Discrete Math. 15 (2002) 235-251, doi: 10.1137/S0895480101383202.
[19] H.M. Mulder, The expansion procedure for graphs, in: R. Bodendiek ed., Contemporary Methods in Graph Theory (B.I.-Wissenschaftsverlag, Manhaim/Wien/Zürich, 1990) 459-477.
[20] J. Mycielski, Sur le coloriage des graphs, Colloq. Math. 3 (1955) 161-162.
[21] I. Peterin, A characterization of planar median graphs, Discuss. Math. Graph Theory 26 (2006) 41-48, doi: 10.7151/dmgt.1299.
[22] A. Vesel, Characterization of resonance graphs of catacondensed hexagonal graphs, MATCH Commun. Math. Comput. Chem. 53 (2005) 195-208.
[23] P. Winkler, Isometric embeddings in products of complete graphs, Discrete Appl. Math. 7 (1984) 221-225, doi: 10.1016/0166-218X(84)90069-6.

Received 11 June 2008
Revised 5 January 2009
Accepted 5 January 2009