Discussiones Mathematicae Graph Theory 29(3) (2009) 423-467
doi: 10.7151/dmgt.1457

[BIBTex] [PDF] [PS]

ON TRANSITIVE ORIENTATIONS OF G-ê

Michael Andresen

Otto-von-Guericke-Universität
Fakultät für Mathematik
PSF 4120, 39016 Magdeburg, Germany

Abstract

A comparability graph is a graph whose edges can be oriented transitively. Given a comparability graph G = (V,E) and an arbitrary edge ê∈E we explore the question whether the graph G-ê, obtained by removing the undirected edge ê, is a comparability graph as well. We define a new substructure of implication classes and present a complete mathematical characterization of all those edges.

Keywords: (primary): comparability graph, edge deletion;
(secondary): transitive orientation, Triangle Lemma, Γ-components, open shop scheduling, irreducibility.

2000 Mathematics Subject Classification: 05C75, 05C20, 90B35, 68R10.

References

[1] H. Bräsel, Lateinische Rechtecke und Maschinenbelegung (Habilitationsschrift. Technische Universität Otto-von-Guericke Magdeburg, 1990).
[2] H. Bräsel, Matrices in Shop Scheduling Problems, in: M. Morlock, C. Schwindt, N. Trautmann and J. Zimmermann, eds, Perspectives on Operations Research - Essays in Honor of Klaus Neumann (Gabler Edition Wissenschaft, Deutscher Universitätsverlag, 2006), 17-43.
[3] H. Bräsel, M. Harborth, T. Tautenhahn and P. Willenius, On the set of solutions of an open shop Problem, Ann. Oper. Res. 92 (1999) 241-263, doi: 10.1023/A:1018938915709.
[4] A. Cournier and M. Habib, A new linear algorithm for modular decomposition, in: S. Tison ed., Trees in Algebra and Programming, CAAP '94, 19th International Colloquium 787 of Lecture Notes in Computer Science (Springer Verlag, 1994) 68-82.
[5] T. Gallai, Transitiv orientierbare Graphen, Acta Math. Acad. Sci. Hungar. 18 (1967) 25-66, doi: 10.1007/BF02020961.
[6] P.C. Gilmore and A.J. Hoffman, A characterization of comparability graphs and of interval graphs, Canad. J. Math. 16 (1964) 539-548, doi: 10.4153/CJM-1964-055-5.
[7] M.C. Golumbic, Comparability graphs and a new matroid, J. Combin. Theory (B) 22 (1977) 68-90, doi: 10.1016/0095-8956(77)90049-1.
[8] M.C. Golumbic, The complexity of comparability graph recognition and coloring, Comp. 18 (1977) 199-208, doi: 10.1007/BF02253207.
[9] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs (Academic Press, 1980).
[10] R.M. McConnell and J.P. Spinrad, Linear-time modular decomposition and efficient transitive orientation of comparability graphs, in: Proceedings of the 5th Annual ACM-SIAM Symposium on Discrete Algorithms 5 (1994) 536-545.
[11] R.M. McConnell and J.P. Spinrad, Modular decomposition and transitive orientation, Discrete Math. 201 (1999) 189-241, doi: 10.1016/S0012-365X(98)00319-7.
[12] R.M. McConnell and J.P. Spinrad, Ordered vertex partitioning, Discrete Math. and Theor. Comp. Sci. 4 (2000) 45-60.
[13] M. Moerig, Modulare Dekomposition durch geordnete Partitionierung der Knotenmenge: Grundlagen und Implementierung, (Diplomarbeit, Otto-von-Guericke-Universität Magdeburg, 2006).
[14] A. Natanzon, R. Shamir and R. Sharan, Complexity classification of some edge modification problems, Discrete Appl. Math. 113 (2001) 109-128, doi: 10.1016/S0166-218X(00)00391-7.
[15] K. Simon, Effiziente Algorithmen für perfekte Graphen (Teubner, 1992).
[16] P. Willenius, Irreduzibilitätstheorie bei Shop-Scheduling-Problemen (Dissertationsschrift, Shaker Verlag, 2000).
[17] M. Yannakakis, Edge deletion problems, SIAM J. Comput. 10 (2) (1981) 297-309, doi: 10.1137/0210021.

Received 28 February 2007
Revised 18 February 2009
Accepted 18 February 2009