Discussiones Mathematicae Graph Theory 29(1) (2009)
39-49
doi: 10.7151/dmgt.1431
Hortensia Galeana-Sanchez
Instituto de Matemáticas | Laura Pastrana
Facultad de Ciencias Universidad Nacional Autónoma de México Ciudad Universitaria, Circuito Exterior México, D.F. 04510, México |
In this paper, we consider some operations on digraphs and prove the existence of k-kernels in digraphs formed by these operations from another digraphs.
Keywords: k-kernel, k-subdivision digraph, k-middle digraph and k-total digraph.
2000 Mathematics Subject Classification: Primary: 05C20; Secondary: 05C69.
[1] | C. Berge, Graphs (North-Holland Mathematical Library, 6 North Holland, Amsterdam, 1985). |
[2] | P. Duchet, Graphes noyau-parfaits, Ann. Discrete Math. 9 (1980) 93-101, doi: 10.1016/S0167-5060(08)70041-4. |
[3] | P. Duchet, A sufficient condition for a digraph to be kernel-perfect, J. Graph Theory 11 (1987) 81-85, doi: 10.1002/jgt.3190110112. |
[4] | P. Duchet and H. Meyniel, A note on kernel-critical graphs, Discrete Math. 33 (1981) 103-105, doi: 10.1016/0012-365X(81)90264-8. |
[5] | H. Galeana-Sánchez, On the existence of (k,l)-kernels in digraphs, Discrete Math. 85 (1990) 99-102, doi: 10.1016/0012-365X(90)90167-G. |
[6] | H. Galeana-Sánchez, On the existence of kernels and h-kernels in directed graphs, Discrete Math. 110 (1992) 251-255, doi: 10.1016/0012-365X(92)90713-P. |
[7] | H. Galeana-Sánchez and V. Neumann-Lara, On kernel-perfect critical digraphs, Discrete Math. 59 (1986) 257-265, doi: 10.1016/0012-365X(86)90172-X. |
[8] | H. Galeana-Sánchez and V. Neumann-Lara, Extending kernel perfect digraphs to kernel perfect critical digraphs, Discrete Math. 94 (1991) 181-187, doi: 10.1016/0012-365X(91)90023-U. |
[9] | M. Harminc, On the (m,n)-basis of a digraph, Math. Slovaca 30 (1980) 401-404. |
[10] | M. Harminc, Solutions and kernels of a directed graph, Math. Slovaca 32 (1982) 262-267. |
[11] | M. Harminc and T. Olejníková, Binary operations on directed graphs and their solutions (Slovak with English and Russian summaries), Zb. Ved. Pr. VST, Košice (1984) 29-42. |
[12] | M. Kucharska, On (k,l)-kernels of orientations of special graphs, Ars Combinatoria 60 (2001) 137-147. |
[13] | M. Kucharska and M. Kwaśnik, On (k,l)-kernels of superdigraphs of P_{m} and C_{m}, Discuss. Math. Graph Theory 21 (2001) 95-109, doi: 10.7151/dmgt.1135. |
[14] | M. Kwaśnik, The generalization of Richardson theorem, Discuss. Math. IV (1981) 11-13. |
[15] | M. Kwaśnik, On (k,l)-kernels of exclusive disjunction, Cartesian sum and normal product of two directed graphs, Discuss. Math. V (1982) 29-34. |
[16] | M. Blidia, P. Duchet, H. Jacob, F. Maffray and H. Meyniel, Some operations preserving the existence of kernels, Discrete Math. 205 (1999) 211-216, doi: 10.1016/S0012-365X(99)00026-6. |
[17] | M. Richardson, Extensions theorems for solutions of irreflexive relations, Proc. Mat. Acad. Sci. 39 (1953) 649-655, doi: 10.1073/pnas.39.7.649. |
[18] | M. Richardson, Solutions of irreflexive relations, Ann. Math. 58 (1953) 573-590, doi: 10.2307/1969755. |
[19] | J. Topp, Kernels of digraphs formed by some unary operations from other digraphs, J. Rostock Math. Kolloq. 21 (1982) 73-81. |
[20] | J. von Neumann and O. Morgenstern, Theory of games and economic behavior (Princeton University Press, Princeton, 1944). |
[21] | A. Włoch and I. Włoch, On (k,l)-kernels in generalized products, Discrete Math. 164 (1997) 295-301, doi: 10.1016/S0012-365X(96)00064-7. |
Received 12 September 2007
Revised 8 December 2007
Accepted 29 December 2008