Discussiones Mathematicae Graph Theory 28(3) (2008)
463-476
doi: 10.7151/dmgt.1420
S.A. Choudum and S. Lavanya
Department of Mathematics
Indian Institute of Technology Madras
Chennai 600 036, India
e-mail: sac@iitm.ac.in
e-mail: s.lavanya@yahoo.com
Keywords: complete ternary trees, hypercube, interconnection network, embedding, dilation, node congestion, edge congestion.
2000 Mathematics Subject Classification: 05C05, 05C90, 68E10.
[1] | S.L. Bezrukov, Embedding complete trees into the hypercube, Discrete Math. 110 (2001) 101-119, doi: 10.1016/S0166-218X(00)00256-0. |
[2] | A.K. Gupta, D. Nelson and H. Wang, Efficient embeddings of ternary trees into hypercubes, Journal of Parallel and Distributed Computing 63 (2003) 619-629, doi: 10.1016/S0743-7315(03)00037-6. |
[3] | I. Havel, On certain trees in hypercube, in: R. Bodendick and R. Henn, eds, Topics in Combinatorics and Graph Theory (Physica-Verlag, Heidelberg, 1990) 353-358. |
[4] | X.J. Shen, Q. Hu and W.F. Liang, Embedding k-ary complete trees into hypercubes, Journal of Parallel and Distributed Computing 24 (1995) 100-106, doi: 10.1006/jpdc.1995.1010. |
[5] | F.T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes (Morgan Kauffmann, San Mateo, CA, 1992). |
[6] | B. Monien and H. Sudbourough, Embedding one interconnection network into another, Computing Supplementary 7 (1990) 257-282. |
[7] | J. Trdlicka and P. Tvrdík, Embedding of k-ary complete trees into hypercubes with uniform load, Journal of Parallel and Distributed Computing 52 (1998) 120-131, doi: 10.1006/jpdc.1998.1464. |
[8] | A.Y. Wu, Embedding of tree networks in hypercube, Journal of Parallel and Distributed Computing 2 (1985) 238-249, doi: 10.1016/0743-7315(85)90026-7. |
Received 24 October 2007
Revised 12 May 2008
Accepted 12 May 2008