Discussiones Mathematicae Graph Theory 28(3) (2008)
557-561
doi: 10.7151/dmgt.1427
Gurusamy Rengasamy Vijayakumar
School of Mathematics
Tata Institute of Fundamental Research
Homi Bhabha Road, Colaba, Mumbai 400 005, India
e-mail: vijay@math.tifr.res.in
Keywords: eigenvalues of a graph, characteristic polynomial.
2000 Mathematics Subject Classification: 05C50, 15A18.
[1] | M. Doob, A surprising property of the least eigenvalue of a graph, Linear Algebra and Its Applications 46 (1982) 1-7, doi: 10.1016/0024-3795(82)90021-0. |
[2] | C. Godsil and G. Royle, Algebraic Graph Theory (Springer, New York, 2001). |
[3] | P.W.H. Lemmens and J.J. Seidel, Equiangular lines, Journal of Algebra 24 (1973) 494-512, doi: 10.1016/0021-8693(73)90123-3. |
[4] | L. Lovász, Combinatorial Problems and Exercises (North-Holland Publishing Company, Amsterdam, 1979). |
[5] | A.J. Schwenk, Computing the characteristic polynomial of a graph, in: Graphs and Combinatorics, eds. R.A. Bari and F. Harary, Springer-Verlag, Lecture Notes in Math. 406 (1974) 153-172. |
[6] | N.M. Singhi and G.R. Vijayakumar, Signed graphs with least eigenvalue < −2, European J. Combin. 13 (1992) 219-220, doi: 10.1016/0195-6698(92)90027-W. |
[7] | J.H. Smith, Some properties of the spectrum of a graph, in: Combinatorial Structures and their Applications, eds. R. Guy, H. Hanani, N. Sauer and J. Schönheim, Gordon and Breach, New York (1970), 403-406. |
[8] | D.B. West, Introduction to Graph Theory, Second edition (Printice Hall, New Jersey, USA, 2001). |
Received 3 October 2007
Revised 10 June 2008
Accepted 10 June 2008