Discussiones Mathematicae Graph Theory 28(2) (2008) 229-247
doi: 10.7151/dmgt.1403

[BIBTex] [PDF] [PS]


M.M.M. Jaradat

Department of Mathematics
Yarmouk University
e-mail: mmjst4@yu.edu.jo


A construction of minimum cycle bases of the lexicographic product of graphs is presented. Moreover, the length of a longest cycle of a minimal cycle basis is determined.

Keywords: cycle space, lexicographic product, cycle basis.

2000 Mathematics Subject Classification: 05C38, 05C75, 05B35.


[1] M. Anderson and M. Lipman, The wreath product of graphs, Graphs and Applications (Boulder, Colo., 1982), (Wiley-Intersci. Publ., Wiley, New York, 1985) 23-39.
[2] F. Berger, Minimum Cycle Bases in Graphs (PhD thesis, Munich, 2004).
[3] Z. Bradshaw and M.M.M. Jaradat, Minimum cycle bases for direct products of K2 with complete graphs, Australasian J. Combin. (accepted).
[4] W.-K. Chen, On vector spaces associated with a graph, SIAM J. Appl. Math. 20 (1971) 525-529, doi: 10.1137/0120054.
[5] D.M. Chickering, D. Geiger and D. HecKerman, On finding a cycle basis with a shortest maximal cycle, Information Processing Letters 54 (1994) 55-58, doi: 10.1016/0020-0190(94)00231-M.
[6] L.O. Chua and L. Chen, On optimally sparse cycles and coboundary basis for a linear graph, IEEE Trans. Circuit Theory 20 (1973) 54-76.
[7] G.M. Downs, V.J. Gillet, J.D. Holliday and M.F. Lynch, Review of ring perception algorithms for chemical graphs, J. Chem. Inf. Comput. Sci. 29 (1989) 172-187, doi: 10.1021/ci00063a007.
[8] R. Hammack, Minimum cycle bases of direct products of bipartite graphs, Australasian J. Combin. 36 (2006) 213-221.
[9] R. Hammack, Minimum cycle bases of direct products of complete graphs, Information Processing Letters 102 (2007) 214-218, doi: 10.1016/j.ipl.2006.12.012.
[10] W. Imrich and S. Klavžar, Product Graphs: Structure and Recognition (Wiley, New York, 2000).
[11] W. Imrich and P. Stadler, Minimum cycle bases of product graphs, Australasian J. Combin. 26 (2002) 233-244.
[12] M.M.M. Jaradat, On the basis number and the minimum cycle bases of the wreath product of some graphs I, Discuss. Math. Graph Theory 26 (2006) 113-134, doi: 10.7151/dmgt.1306.
[13] M.M.M. Jaradat, M.Y. Alzoubi and E.A. Rawashdeh, The basis number of the Lexicographic product of different ladders, SUT Journal of Mathematics 40 (2004) 91-101.
[14] A. Kaveh, Structural Mechanics, Graph and Matrix Methods. Research Studies Press (Exeter, UK, 1992).
[15] A. Kaveh and R. Mirzaie, Minimal cycle basis of graph products for the force method of frame analysis, Communications in Numerical Methods in Engineering, to appear, doi: 10.1002/cnm.979.
[16] G. Liu, On connectivities of tree graphs, J. Graph Theory 12 (1988) 435-459, doi: 10.1002/jgt.3190120318.
[17] M. Plotkin, Mathematical basis of ring-finding algorithms in CIDS, J. Chem. Doc. 11 (1971) 60-63, doi: 10.1021/c160040a013.
[18] P. Vismara, Union of all the minimum cycle bases of a graph, Electr. J. Combin. 4 (1997) 73-87.
[19] D.J.A. Welsh, Kruskal's theorem for matroids, Proc. Cambridge Phil, Soc. 64 (1968) 3-4, doi: 10.1017/S030500410004247X.

Received 23 May 2007
Revised 17 April 2008
Accepted 17 April 2008