Discussiones Mathematicae Graph Theory 28(2) (2008) 367-373
doi: 10.7151/dmgt.1412

[BIBTex] [PDF] [PS]


Thomas Böhme,  Tobias Gerlach and Michael Stiebitz

Institut für Mathematik
Technische Universität Ilmenau
Ilmenau, Germany
e-mail: tboehme@theoinf.tu-ilmenau.de
e-mail: tobias.gerlach@tu-ilmenau.de
e-mail: stieb@mathematik.tu-ilmenau.de


A graph G is called k-ordered if for every sequence of k distinct vertices there is a cycle traversing these vertices in the given order.

In the present paper we consider two novel generalizations of this concept, k-vertex-edge-ordered and strongly k-vertex-edge-ordered . We prove the following results for a chordal graph G:

G is (2k−3)-connected if and only if it is k-vertex-edge-ordered (k ≥ 3).
G is (2k−1)-connected if and only if it is strongly k-vertex-edge-ordered (k ≥ 2).
G is k-linked if and only if it is (2k−1)-connected.

Keywords: paths and cycles, connectivity, chordal graphs.

2000 Mathematics Subject Classification: 05C38, 05C40.


[1] B. Bollobás and A. Thomason, Highly linked graphs, Combinatorica 16 (1996) 313-320, doi: 10.1007/BF01261316.
[2] R. Diestel, Graph Theory, Graduate Texts in Mathematics 173 (Springer, 2000).
[3] G.A. Dirac, On rigid circuit graphs, Abh. Math. Sem. Univ. Hamburg 25 (1961) 71-76, doi: 10.1007/BF02992776.
[4] R.J. Faudree, Survey on results on k-ordered graphs, Discrete Math. 229 (2001) 73-87, doi: 10.1016/S0012-365X(00)00202-8.
[5] H.A. Jung, Eine veralgemeinerung des n-fachen zusammenhangs für graphen, Math. Ann. 187 (1970) 95-103, doi: 10.1007/BF01350174.
[6] D.G. Larman and P. Mani, On the existence of certain configurations within graphs and the 1-skeleton of polytopes, Proc. London Math. Soc. 20 (1970) 144-160, doi: 10.1112/plms/s3-20.1.144.
[7] L. Ng and M. Schultz, k-ordered Hamiltonian graphs, J. Graph Theory 24 (1997) 45-57, doi: 10.1002/(SICI)1097-0118(199701)24:1<45::AID-JGT6>3.0.CO;2-J.
[8] R. Thomas and P. Wollan, An improved linear edge bound for graph linkages, to appear in European J. Comb.

Received 20 September 2007
Revised 1 April 2008
Accepted 2 April 2008