Discussiones Mathematicae Graph Theory 27(3) (2007)
485-506
doi: 10.7151/dmgt.1375
Gary Chartrand
Department of Mathematics | Ladislav Nebeský
Faculty of Philosophy & Arts | Ping Zhang
Department of Mathematics |
Keywords: distance, geodesic, T-path, T-geodesic, T-distance.
2000 Mathematics Subject Classification: 05C05, 05C12.
[1] | H. Bielak and M.M. Sysło, Peripheral vertices in graphs, Studia Sci. Math. Hungar. 18 (1983) 269-75. |
[2] | F. Buckley, Z. Miller and P.J. Slater, On graphs containing a given graph as center, J. Graph Theory 5 (1981) 427-434, doi: 10.1002/jgt.3190050413. |
[3] | G. Chartrand and P. Zhang, Introduction to Graph Theory (McGraw-Hill, Boston, 2005). |
[4] | F. Harary and R.Z. Norman, The dissimilarity characteristic of Husimi trees, Ann. of Math. 58 (1953) 134-141, doi: 10.2307/1969824. |
[5] | L. Nebeský, A characterization of the set of all shortest paths in a connected graph, Math. Bohem. 119 (1994) 15-20. |
[6] | L. Nebeský, A new proof of a characterization of the set of all geodesics in a connected graph, Czech. Math. J. 48 (1998) 809-813, doi: 10.1023/A:1022404126392. |
[7] | L. Nebeský, The set of geodesics in a graph, Discrete Math. 235 (2001) 323-326, doi: 10.1016/S0012-365X(00)00285-5. |
Received 6 July 2006
Revised 18 April 2007
Accepted 30 April 2007