Discussiones Mathematicae Graph Theory 27(2) (2007)
251-268
doi: 10.7151/dmgt.1359
Suresh Manjanath Hegde Department of mathematical and Computational sciences |
Mirka Miller School of Electrical Engineering and Computer Science |
In this paper, we give an upper bound for k with respect to which the given graph may possibly be k-sequentially additive using the independence number of the graph. Also, we prove a variety of results on k-sequentially additive graphs, including the number of isolated vertices to be added to a complete graph with four or more vertices to be simply sequentially additive and a construction of an infinite family of k-sequentially additive graphs from a given k-sequentially additive graph.
Keywords: simply (k-)sequentially additive labelings (graphs), segregated labelings.
2000 Mathematics Subject Classification: 05C78.
[1] | B.D. Acharya and S.M. Hegde, Arithmetic graphs, J. Graph Theory 14 (1990) 275-299, doi: 10.1002/jgt.3190140302. |
[2] | B.D. Acharya and S.M. Hegde, Strongly indexable graphs, Discrete Math. 93 (1991) 123-129, doi: 10.1016/0012-365X(91)90248-Z. |
[3] | D.W. Bange, A.E. Barkauskas and P.J. Slater, Sequentially additive graphs, Discrete Math. 44 (1983) 235-241, doi: 10.1016/0012-365X(83)90187-5. |
[4] | G.S. Bloom, Numbered undirected graphs and their uses: A survey of unifying scientific and engineering concepts and its use in developing a theory of non-redundant homometric sets relating to some ambiguities in x-ray diffraction analysis (Ph. D., dissertation, Univ. of Southern California, Loss Angeles, 1975). |
[5] | Herbert B. Enderton, Elements of Set Theory (Academic Press, 2006). |
[6] | H. Enomoto, H. Liadi, A.S.T. Nakamigava and G. Ringel, Super edge magic graphs, SUT J. Mathematics 34 (2) (1998) 105-109. |
[7] | J.A. Gallian, A dynamic survey of graph labeling, Electronic J. Combinatorics DS#6 (2003) 1-148. |
[8] | S.W. Golomb, How to number a graph, in: Graph Theory and Computing, (ed. R.C. Read) (Academic Press, 1972), 23-37. |
[9] | F. Harary, Graph Theory (Addison Wesley, Reading, Massachusetts, 1969). |
[10] | S.M. Hegde, On indexable graphs, J. Combin., Information & System Sciences 17 (1992) 316-331. |
[11] | S.M. Hegde and Shetty Sudhakar, Strongly k-indexable labelings and super edge magic labelings are equivalent, NITK Research Bulletin 12 (2003) 23-28. |
[12] | A. Rosa, On certain valuations of the vertices of a graph, in: Theory of Graphs, Proceedings of the International Symposium, Rome (ed. P. Rosentiehl) (Dunod, Paris, 1981) 349-355. |
[13] | D.B. West, Introduction to Graph Theory (Prentice Hall of India, New Delhi, 2003). |
Received 4 January 2006
Revised 5 February 2007
Accepted 5 February 2007