Discussiones Mathematicae Graph Theory 26(3) (2006)
369-376
doi: 10.7151/dmgt.1329
Gábor Bacsó and Zsolt Tuza
Computer and Automation Institute
Hungarian Academy of Sciences
H-1111 Budapest, Kende u. 13-17, Hungary
Keywords: graph coloring, cost chromatic number, intersection number of a hypergraph.
2000 Mathematics Subject Classification: Primary: 05C15, 05C62; Secondary: 05C35, 05C65.
[1] | Y. Alavi, P. Erdős, P.J. Malde, A.J. Schwenk and C. Thomassen, Tight bounds on the chromatic sum of a connected graph, J. Graph Theory 13 (1989) 353-357, doi: 10.1002/jgt.3190130310. |
[2] | U. Feigle, L. Lovász and P. Tetali, Approximating sum set cover, Algorithmica 40 (2004) 219-234, doi: 10.1007/s00453-004-1110-5. |
[3] | M. Gionfriddo, F. Harary and Zs. Tuza, The color cost of a caterpillar, Discrete Math. 174 (1997) 125-130, doi: 10.1016/S0012-365X(96)00325-1. |
[4] | E. Kubicka, Constraints on the chromatic sequence for trees and graphs, Congr. Numer. 76 (1990) 219-230. |
[5] | E. Kubicka and A.J. Schwenk, An introduction to chromatic sums, in: Proc. ACM Computer Science Conference, Louisville (Kentucky) 1989, 39-45. |
[6] | J. Mitchem and P. Morriss, On the cost chromatic number of graphs, Discrete Math. 171 (1997) 201-211, doi: 10.1016/S0012-365X(96)00005-2. |
[7] | J. Mitchem, P. Morriss and E. Schmeichel, On the cost chromatic number of outerplanar, planar and line graphs, Discuss. Math. Graph Theory 17 (1997) 229-241, doi: 10.7151/dmgt.1050. |
[8] | M. Molloy and B. Reed, Graph Colouring and the Probabilistic Method (Springer, 2002). |
[9] | T. Szkaliczki, Routing with minimum wire length in the Dogleg-free Manhattan Model, SIAM Journal on Computing 29 (1999) 274-287, doi: 10.1137/S0097539796303123. |
[10] | Zs. Tuza, Contractions and minimal k-colorability, Graphs and Combinatorics 6 (1990) 51-59, doi: 10.1007/BF01787480. |
[11] | Zs. Tuza, Problems and results on graph and hypergraph colorings, Le Matematiche 45 (1990) 219-238. |
Received 1 December 2005
Revised 19 June 2006