Discussiones Mathematicae Graph Theory 26(1) (2006)
161-175
doi: 10.7151/dmgt.1310
Andrey A. Dobrynin and Leonid S. Mel'nikov
Sobolev Institute of Mathematics
Russian Academy of Sciences
Siberian Branch, Novosibirsk 630090, Russia
e-mail: dobr@math.nsc.ru, omeln@math.nsc.ru
Keywords and phrases: distance in a graph, Wiener index, star, iterated line graph.
2000 Mathematics Subject Classification: 05C12, 05C05.
[1] | A.T. Balaban, I. Motoc, D. Bonchev and O. Mekenyan, Topological indices for structure-activity correlations, Topics Curr. Chem. 114 (1983) 21-55, doi: 10.1007/BFb0111212. |
[2] | S.H. Bertz, Branching in graphs and molecules, Discrete Appl. Math. 19 (1988) 65-83, doi: 10.1016/0166-218X(88)90006-6. |
[3] | S.H. Bertz and W.F. Wright, The graph theory approach to synthetic analysis: definition and application of molecular complexity and synthetic complexity, Graph Theory Notes New York 35 (1998) 32-48. |
[4] | F. Buckley, Mean distance of line graphs, Congr. Numer. 32 (1981) 153-162. |
[5] | E.R. Canfield, R.W. Robinson and D.H. Rouvray, Determination of the Wiener molecular branching index for the general tree, J. Comput. Chem. 6 (1985) 598-609, doi: 10.1002/jcc.540060613. |
[6] | Chemical Graph Theory - Introduction and Fundamentals, D. Bonchev and D.H. Rouvray, eds. (Gordon & Breach, New York, 1991). |
[7] | A.A. Dobrynin and I. Gutman, The Wiener index for trees and graphs of hexagonal systems, Diskretn. Anal. Issled. Oper. Ser. 2 5 (1998) 34-60, in Russian. |
[8] | A.A. Dobrynin, Distance of iterated line graphs, Graph Theory Notes New York 37 (1998) 8-9. |
[9] | A.A. Dobrynin, R. Entringer and I. Gutman, Wiener index for trees: theory and applications, Acta Appl. Math. 66 (2001) 211-249, doi: 10.1023/A:1010767517079. |
[10] | A.A. Dobrynin, I. Gutman, S. Klavžar and P. Zigert, Wiener index of hexagonal systems, Acta Appl. Math. 72 (2002) 247-294, doi: 10.1023/A:1016290123303. |
[11] | A.A. Dobrynin, I. Gutman and V. Jovasević, Bicyclic graphs and their line graphs with the same Wiener index, Diskretn. Anal. Issled. Oper. Ser. 2 4 (1997) 3-9, in Russian. |
[12] | A.A. Dobrynin and L.S. Mel'nikov, Wiener index for graphs and their line graphs with arbitrary large cyclomatic numbers, Appl. Math. Lett. 18 (2005) 307-312, doi: 10.1016/j.aml.2004.03.007. |
[13] | A.A. Dobrynin and L.S. Mel'nikov, Wiener index for graphs and their line graphs, Diskretn. Anal. Issled. Oper. Ser. 2 11 (2004) 25-44, in Russian. |
[14] | A.A. Dobrynin and L.S. Mel'nikov, Trees and their quadratic line graphs having the same Wiener index, MATCH Commun. Math. Comput. Chem. 50 (2004) 145-164. |
[15] | A.A. Dobrynin and L.S. Mel'nikov, Trees, quadratic line graphs and the Wiener index, Croat. Chem Acta 77 (2004) 477-480. |
[16] | A.A. Dobrynin and L.S. Mel'nikov, Wiener index, line graphs and the cyclomatic number, MATCH Commun. Math. Comput. Chem. 53 (2005) 209-214. |
[17] | R.C. Entringer, D.E. Jackson and D.A. Snyder, Distance in graphs, Czechoslovak Math. J. 26 (1976) 283-296. |
[18] | R.C. Entringer, Distance in graphs: trees, J. Combin. Math. Combin. Comput. 24 (1997) 65-84. |
[19] | I. Gutman, Distance of line graphs, Graph Theory Notes New York 31 (1996) 49-52. |
[20] | I. Gutman, V. Jovasević and A.A. Dobrynin, Smallest graphs for which the distance of the graph is equal to the distance of its line graph, Graph Theory Notes New York 33 (1997) 19. |
[21] | I. Gutman and L. Pavlović, More of distance of line graphs, Graph Theory Notes New York 33 (1997) 14-18. |
[22] | I. Gutman and O.E. Polansky, Mathematical Concepts in Organic Chemistry (Springer-Verlag, Berlin, 1986). |
[23] | I. Gutman, Y.N. Yeh, S.L. Lee and Y.L. Luo, Some recent results in the theory of the Wiener number, Indian J. Chem. 32A (1993) 651-661. |
[24] | I. Gutman and E. Estrada, Topological indices based on the line graph of the molecular graph, J. Chem. Inf. Comput. Sci. 36 (1996) 541-543, doi: 10.1021/ci950143i. |
[25] | I. Gutman, L. Popović, B.K. Mishra, M. Kaunar, E. Estrada and N. Guevara, Application of line graphs in physical chemistry. Predicting surface tension of alkanes, J. Serb. Chem. Soc. 62 (1997) 1025-1029. |
[26] | F. Harary, Graph Theory, (Addison Wesley, 1969). |
[27] | G.H. Hardy, J.E. Littlewood and G. Polya, Inequalities (Cambridge University Press: Cambridge, 1934, 2nd ed. 1988). |
[28] | S. Nikolić, N. Trinajstić and Z. Mihalić, The Wiener index: developments and applications, Croat. Chem. Acta 68 (1995) 105-129. |
[29] | J. Plesnik, On the sum of all distances in a graph or digraph, J. Graph Theory 8 (1984) 1-21, doi: 10.1002/jgt.3190080102. |
[30] | O.E. Polansky and D. Bonchev, The Wiener number of graphs. I. General theory and changes due to some graph operations, MATCH Commun. Math. Comput. Chem. 21 (1986) 133-186. |
[31] | D.H. Rouvray, Should we have designs on topological indices?, in: R.B. King, ed., Chemical Application of Topology and Graph Theory, (Elsevier, Amsterdam, 1983) 159-177. |
[32] | N. Trinajstić, Chemical Graph Theory (CRC Press: Boca Raton, 1983; 2nd ed. 1992). |
[33] | H. Wiener, Structural determination of paraffin boiling points, J. Amer. Chem. Soc. 69 (1947) 17-20, doi: 10.1021/ja01193a005. |
Received 24 June 2005
Revised 22 July 2005