Discussiones Mathematicae Graph Theory 26(1) (2006)
5-18
doi: 10.7151/dmgt.1296
^{1}Laura M. Harris, ^{2}Johannes H. Hattingh and ^{1}Michael A. Henning
^{1}School of Mathematical Sciences
University of KwaZulu-Natal
Pietermaritzburg, 3209 South Africa
^{2}Department of Mathematics and Statistics
Georgia State University
Atlanta, GA 30303-3083 USA
e-mail: jhhattingh@gsu.edu
Keywords: total k-subdomination, algorithm, tree.
2000 Mathematics Subject Classification: 05C69.
[1] | L.W. Beineke and M.A. Henning, Opinion function on trees, Discrete Math. 167-168 (1997) 127-139, doi: 10.1016/S0012-365X(96)00221-X. |
[2] | I. Broere, J.H. Hattingh, M.A. Henning and A.A. McRae, Majority domination in graphs, Discrete Math. 138 (1995) 125-135, doi: 10.1016/0012-365X(94)00194-N. |
[3] | G. Chang, S.C. Liaw and H.G. Yeh, k-subdomination in graphs, Discrete Applied Math. 120 (2002) 55-60, doi: 10.1016/S0166-218X(01)00280-3. |
[4] | E.J. Cockayne and C. Mynhardt, On a generalisation of signed dominating functions of graphs, Ars Combin. 43 (1996) 235-245. |
[5] | J.E. Dunbar, S.T. Hedetniemi, M.A. Henning and P.J. Slater, Signed domination in graphs, Graph Theory, Combinatorics and Applications, John Wiley & Sons, Inc. 1 (1995) 311-322. |
[6] | O. Favaron, Signed domination in regular graphs, Discrete Math. 158 (1996) 287-293, doi: 10.1016/0012-365X(96)00026-X. |
[7] | Z. Furedi and D. Mubayi, Signed domination in regular graphs and set-systems, J. Combin. Theory (B) 76 (1999) 223-239, doi: 10.1006/jctb.1999.1905. |
[8] | M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (Freeman, New York, 1979). |
[9] | L. Harris and J.H. Hattingh, The algorithmic complexity of certain functional variations of total domination in graphs, Australasian J. Combin. 29 (2004) 143-156. |
[10] | L. Harris, J.H. Hattingh and M.A. Henning, Total k-subdominating functions on graphs, submitted for publication. |
[11] | J.H. Hattingh, M.A. Henning and P.J. Slater, The algorithmic complexity of signed domination in graphs, Australasian J. Combin. 12 (1995) 101-112. |
[12] | M.A. Henning, Domination in regular graphs, Ars Combin. 43 (1996) 263-271. |
[13] | M.A. Henning, Dominating functions in graphs, Domination in Graphs: Volume II (Marcel-Dekker, Inc., 1998) 31-62. |
[14] | M.A. Henning, Signed total domination in graphs, to appear in Discrete Math. |
[15] | M.A. Henning and H. Hind, Strict open majority functions in Graphs, J. Graph Theory 28 (1998) 49-56, doi: 10.1002/(SICI)1097-0118(199805)28:1<49::AID-JGT6>3.0.CO;2-F. |
[16] | M.A. Henning and P.J. Slater, Inequalities relating domination parameters in cubic graphs, Discrete Math. 158 (1996) 87-98, doi: 10.1016/0012-365X(96)00025-8. |
[17] | P. Lam and B. Wei, On the total domination number of graphs, submitted for publication. |
[18] | J. Matousek, On the signed domination in graphs, Combinatoria 20 (2000) 103-108, doi: 10.1007/s004930070034. |
[19] | X. Yang, X. Huang and Q. Hou, On graphs with equal signed and majority domination number, manuscript (personal communication by X. Yang). |
[20] | H. Yeh and G.J. Chang, Algorithmic aspects of majority domination, Taiwanese J. Math. 1 (1997) 343-350. |
[21] | B. Zelinka, Some remarks on domination in cubic graphs, Discrete Math. 158 (1996) 249-255, doi: 10.1016/0012-365X(94)00324-C. |
[22] | B. Zelinka, Signed total domination number of a graph, Czechoslovak Math. J. 51 (2001) 225-229, doi: 10.1023/A:1013782511179. |
[23] | Z. Zhang, B. Xu, Y. Li and L. Liu, A note on the lower bounds of signed domination number of a graph, Discrete Math. 195 (1999) 295-298, doi: 10.1016/S0012-365X(98)00189-7. |
Received 15 September 2003
Revised 24 August 2005