Discussiones Mathematicae Graph Theory 25(1-2) (2005)
13-28
doi: 10.7151/dmgt.1255
Michael A. Henning
School of Mathematics, Statistics, &
Information Technology, University of KwaZulu-Natal
Pietermaritzburg, 3209 South Africa
e-mail: henning@ukzn.ac.za
Keywords: bounds, domination, double domination, minimum degree two.
2000 Mathematics Subject Classification: 05C69.
[1] | M. Blidia, M. Chellali, and T.W. Haynes, Characterizations of trees with equal paired and double domination numbers, submitted for publication. |
[2] | M. Blidia, M. Chellali, T.W. Haynes and M.A. Henning, Independent and double domination in trees, Utilitas Math., to appear. |
[3] | M. Chellali and T.W. Haynes, Paired and double domination in graphs, Utilitas Math., to appear. |
[4] | J. Harant and M.A Henning, On double domination in graphs, Discuss. Math. Graph Theory, to appear, doi: 10.7151/dmgt.1256. |
[5] | F. Harary and T.W. Haynes, Double domination in graphs, Ars Combin. 55 (2000) 201-213. |
[6] | T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998). |
[7] | T.W. Haynes, S.T. Hedetniemi, and P.J. Slater (eds), Domination in Graphs: Advanced Topics (Marcel Dekker, New York, 1998). |
[8] | C.S. Liao and G.J. Chang, Algorithmic aspects of k-tuple domination in graphs, Taiwanese J. Math. 6 (2002) 415-420. |
[9] | C.S. Liao and G.J. Chang, k-tuple domination in graphs, Information Processing Letters 87 (2003) 45-50, doi: 10.1016/S0020-0190(03)00233-3. |
Received 25 August 2003
Revised 20 May 2004