Discussiones Mathematicae Graph Theory 25(1-2) (2005)
35-44
doi: 10.7151/dmgt.1257
Douglas F. Rall
Department of Mathematics
Furman University
Greenville, South Carolina 29613, USA
e-mail: drall@herky.furman.edu
Keywords: categorical product, open packing, total domination, submultiplicative, supermultiplicative.
2000 Mathematics Subject Classification: 05C69, 05C70, 05C05.
[1] | B.D. Acharya, Graphs whose r-neighbourhoods form conformal hypergraphs, Indian J. Pure Appl. Math. 16 (5) (1985) 461-464. |
[2] | B.L. Hartnell and D.F. Rall, Lower bounds for dominating Cartesian products, J. Combin. Math. Combin. Comput. 31 (1999) 219-226. |
[3] | T.W. Haynes, S.T. Hedetniemi and P.J. Slater (eds), Fundamentals of Domination in Graphs (Marcel Dekker, Inc. New York, 1998). |
[4] | T.W. Haynes, S.T. Hedetniemi and P.J. Slater (eds), Domination in Graphs: Advanced Topics (Marcel Dekker, Inc. New York, 1998). |
[5] | M.A. Henning, Packing in trees, Discrete Math. 186 (1998) 145-155, doi: 10.1016/S0012-365X(97)00228-8. |
[6] | M.A. Henning and D.F. Rall, On the total domination number of Cartesian products of graphs, Graphs and Combinatorics, to appear. |
[7] | M.A. Henning and P.J. Slater, Open packing in graphs, J. Combin. Math. Combin. Comput. 29 (1999) 3-16. |
[8] | W. Imrich and S. Klavžar, Product Graphs: Structure and Recognition (John Wiley & Sons, Inc. New York, 2000). |
[9] | L. Lovász, Normal hypergraphs and the perfect graph conjecture, Discrete Math. 2 (1972) 253-267, doi: 10.1016/0012-365X(72)90006-4. |
[10] | A. Meir and J.W. Moon, Relations between packing and covering numbers of a tree, Pacific J. Math. 61 (1975) 225-233. |
[11] | R.J. Nowakowski and D.F. Rall, Associative graph products and their independence, domination and coloring numbers, Discuss. Math. Graph Theory 16 (1996) 53-79, doi: 10.7151/dmgt.1023. |
Received 24 October 2003
Revised 19 April 2004