Discussiones Mathematicae Graph Theory 25(1-2) (2005)
121-128
doi: 10.7151/dmgt.1266
Gábor Bacsó
Computer and Automation Institute |
Attila Tálos
Eötvös Lóránd University |
Zsolt Tuza
Computer and Automation Institute |
Keywords: graph, dominating set, connected domination, distance domination, forbidden induced subgraph.
2000 Mathematics Subject Classification: 05C69, 05C75, 05C12.
[1] | G. Bacsó and Zs. Tuza, A characterization of graphs without long induced paths, J. Graph Theory 14 (1990) 455-464, doi: 10.1002/jgt.3190140409. |
[2] | G. Bacsó and Zs. Tuza, Dominating cliques in P_{5}-free graphs, Periodica Math. Hungar. 21 (1990) 303-308, doi: 10.1007/BF02352694. |
[3] | G. Bacsó and Zs. Tuza, Domination properties and induced subgraphs, Discrete Math. 1 (1993) 37-40. |
[4] | G. Bacsó and Zs. Tuza, Dominating subgraphs of small diameter, J. Combin. Inf. Syst. Sci. 22 (1997) 51-62. |
[5] | G. Bacsó and Zs. Tuza, Structural domination in graphs, Ars Combinatoria 63 (2002) 235-256. |
[6] | M.B. Cozzens and L.L. Kelleher, Dominating cliques in graphs, pp. 101-116 in [10]. |
[7] | P. Erdős, M. Saks and V.T. Sós Maximum induced trees in graphs, J. Combin. Theory (B) 41 (1986) 61-79, doi: 10.1016/0095-8956(86)90028-6. |
[8] | T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, Inc., New York, N.Y., 1998). |
[9] | E.S. Wolk, The comparability graph of a tree, Proc. Amer. Nath. Soc. 3 (1962) 789-795, doi: 10.1090/S0002-9939-1962-0172273-0. |
[10] | - Topics on Domination (R. Laskar and S. Hedetniemi, eds.), Annals of Discrete Math. 86 (1990). |
Received 3 November 2003
Revised 17 November 2004