Discussiones Mathematicae Probability and Statistics 24(1) (2004) 109-126
Institute of Mathematics, University of Zielona Góra |
Andrzej Michalski
Department of Mathematics | Agnieszka Urbańska-Motyka
Institute of Mathematics, University of Zielona Góra |
Keywords: mixed linear models, likelihood-based inference, ML- and REML- estimation, variance components, Fisher's information.
2000 Mathematics Subject Classification: 62F10, 62F12.
[1] | D. Birkes and S.S. Wulff, Existence of maximum likelihood estimates in normal variance-components models, J. Statist. Plann. Inference 113 (2003), 35-47. |
[2] | T. Caliński and S. Kageyama, Block Designs: A Randomization Approach, Vol. I: Analysis, Lecture Notes in Statistics, Springer 2000. |
[3] | M.Y. Elbassouni, On the existency of explicit restricted maximim likelihood estimators in multivariate normal models, Sankhy[`a] Series B 45 (1983),303-305. |
[4] | S. Gnot, D. Stemann, G. Trenkler and A. Urbańska-Motyka, On maximum likelihood estimators in multivariate normal mixed models with two variance components, Tatra Mountains Mathematical Publications 17 (1999), 111-119. |
[5] | S. Gnot, D. Stemann, G. Trenkler and A. Urbańska-Motyka, Maximum likelihood estimators in mixed normal models with two variance components, Statistics 36 (4) (2002), 283-302. |
[6] | E.L. Lehman, Theory of Point Estimation, Wiley, New York 1983. |
[7] | A. Olsen, J. Seely and D. Birkes, Invariant quadratic unbiased estimation for two variance components, Ann. Statist. 4 (1976), 878-890. |
[8] | H.D. Patterson and R. Thompson, Recovery of intra-block information when block sizes are unequal, Biometrika 58 (1971), 545-554. |
[9] | H.D. Patterson and R. Thompson, Maximum likelihood estimation of components of variance, Proceedings of 8th Biometric Conference (1975), 197-207. |
[10] | C.R. Rao, MINQUE theory and its relation to ML and MML estimation of variance components, Sankhy[`a] Series B 41 (1979), 138-153. |
[11] | C.R. Rao and J. Kleffe, Estimation of Variance Components and Applications, North Holland, Amsterdam 1988. |
[12] | Poduri S.R.S. Rao, Variance Components Estimation, Mixed Models, Methodologies and Applications, Chapman and Hall, London, Weinheim, New York, Tokyo, Melbourne, Madras 1997. |
[13] | S.R. Searle, G. Casella and Ch.E. McCulloch, Variance Components, Wiley, New York 1992. |
[14] | J. Seely, Minimal sufficient statistics and completeness for multivariate normal families, Sankhy[`a] Ser.A 39 (1977), 170-185. |
[15] | G.W. Snedecor and W.G. Cochran, Statistical Methods (8th ed.), Ames, IA: Iowa State University Press 1989. |
[16] | S.E. Stern and A.H. Welsh, Likelihood inference for small variance components, The Canadian Journal of Statistics 28 (2000), 517-532. |
[17] | W.H. Swallow and J.F. Monahan, Monte Carlo comparison of ANOVA, MIVQUE, REML, and ML estimators of variance components, Technometrics 26 (1984), 47-57. |
[18] | T.H. Szatrowski, Necessary and sufficient conditions for explicit solutions in the multivariate normal estimation problem for patterned means and covariances, Ann. Statist. 8 (1980), 803-810. |
[19] | T.H. Szatrowski and J.J. Miller, Explicit maximum likelihood estimates from balanced data in the mixed model of the analysis of variance, Ann. Statist. 8 (1980), 811-819. |
Received 3 December 2003