[1]
T. Bednarski, Fréchet differentiability and robust estimation, Asymptotic Statistics. Proc. of
the Fifth Prague Symp. Physica Verlag, Springer, (1994), 4958.

[2]
T. Bednarski, B.R. Clarke and W. Kokiewicz, Statistical expansions and locally uniform Fréchet
differentiability, J. Australian Math. Soc., Ser. A 50 (1991), 8897.

[3]
T. Bednarski and B.R. Clarke, Trimmed likelihood estimation of location and scale of the normal
distribution, Australian J. Statists. 35 (1993), 141153.

[4]
T. Bednarski and Z. Zontek, Robust estimation of parameters in mixed unbalanced models, Ann.
Statist. 24 (4) (1996), 14931510.

[5]
B.R. Clarke, Uniqueness and Fréchet differentiability of functional solutions to maximum likelihood
type equations, Ann. Statist. 11 (1983), 11961206.

[6]
B.R. Clarke, Nonsmooth analysis and Fréchet differentiability of Mfunctionals, Probab. Th. Rel. Fields
73 (1986), 197209.

[7]
B. Iglewicz, Robust scale estimators and confidence intervals for location, D.C. Hoagling, F. Mosteller
and J.W. Tukey, Eds., Understanding Robust and Exploratory Data Analysis, Wiley, New York, (1983),
404431.

[8]
J. Kiefer, On large deviations of the empiric D.F. of vector chance variables and a law of
iterated logarithm, Pacific J. Math. 11 (1961), 649660.

[9]
D.M. Rocke, Robustness and balance in the mixed model, Biometrics 47 (1991), 303309.

[10]
J. Seely, Quadratic subspaces and completness, Ann. Math. Statist. 42 (1971),
710721.

[11]
R. Zmyślony and H. Drygas, Jordan algebras and Bayesian quadratic estimation of variance components,
Linear Algebra and its Applications 168 (1992), 259275.
