Discussiones Mathematicae Graph Theory 33(4) (2013) 657-664
doi: 10.7151/dmgt.1701

[BIBTex] [PDF] [PS]

The Phylogeny Graphs of Doubly Partial Orders

Boram Park

National Institute for Mathematical Sciences
Daejeon 305-811, Korea

Yoshio Sano

Division of Information Engineering
Faculty of Engineering, Information and Systems
University of Tsukuba
Ibaraki 305-8573, Japan

Abstract

The competition graph of a doubly partial order is known to be an interval graph. The CCE graph and the niche graph of a doubly partial order are also known to be interval graphs if the graphs do not contain a cycle of length four and three as an induced subgraph, respectively. Phylogeny graphs are variant of competition graphs. The phylogeny graph P(D) of a digraph D is the (simple undirected) graph defined by V(P(D)): = V(D) and E(P(D)): = {xy | N+D(x) ∩N+D(y) ≠ ∅} ∪{xy | (x,y) ∈ A(D) }, where N+D(x): = {v ∈ V(D) | (x,v) ∈ A(D)}.

In this note, we show that the phylogeny graph of a doubly partial order is an interval graph. We also show that, for any interval graph G, there exists an interval graph G˜ such that G˜ contains the graph G as an induced subgraph and that G˜ is the phylogeny graph of a doubly partial order.

Keywords: competition graph, phylogeny graph, doubly partial order, interval graph

2010 Mathematics Subject Classification: 05C20, 05C75.

References

[1]C. Cable, K.F. Jones, J.R. Lundgren and S. Seager, Niche graphs, Discrete Appl. Math. 23 (1989) 231--241, doi: 10.1016/0166-218X(89)90015-2.
[2]H.H. Cho and S.-R. Kim, A class of acyclic digraphs with interval competition graphs, Discrete Appl. Math. 148 (2005) 171--180, doi: 10.1016/j.dam.2005.02.005.
[3]J.E. Cohen, Interval graphs and food webs. A finding and a problem, RAND Corporation Document 17696-PR (Santa Monica, California, 1968).
[4]D.C. Fisher, J.R. Lundgren, S.K. Merz and K.B. Reid, The domination and competition graphs of a tournament, J. Graph Theory 29 (1998) 103--110, doi: 10.1002/(SICI)1097-0118(199810)29:2<103::AID-JGT6>3.0.CO;2-V .
[5]K.F. Fraughnaugh, J.R. Lundgren, J.S. Maybee, S.K. Merz and N.J. Pullman, Competition graphs of strongly connected and hamiltonian digraphs, SIAM J. Discrete Math. 8 (1995) 179--185, doi: 10.1137/S0895480191197234.
[6]S.-R. Kim The competition number and its variants, in: Quo Vadis Graph Theory?, J. Gimbel, J.W. Kennedy, and L.V. Quintas (Eds.), Ann. Discrete Math. 55 (1993) 313--325.
[7]S.-J. Kim, S.-R. Kim and Y. Rho, On CCE graphs of doubly partial orders, Discrete Appl. Math. 155 (2007) 971--978, doi: 10.1016/j.dam.2006.09.013.
[8]S.-R. Kim, J.Y. Lee, B. Park, W.J. Park and Y. Sano, The niche graphs of doubly partial orders, Congr. Numer. 195 (2009) 19--32.
[9]S.-R. Kim, J.Y. Lee, B. Park and Y. Sano, The competition hypergraphs of doubly partial orders, Discrete Appl. Math, doi: 10.1016/j.dam.2012.05.024.
[10]S.-R. Kim and F.S. Roberts, Competition graphs of semiorders and the conditions C(p) and C*(p), Ars Combin. 63 (2002) 161--173.
[11]J.Y. Lee and S.-R. Kim, Competition graphs of acyclic digraphs satisfying condition C*(p), Ars Combin. 93 (2009) 321--332.
[12]J.R. Lundgren, Food webs, competition graphs, competition-c.
[13]J.R. Lundgren, J.S. Maybee and C.W. Rasmussen, Interval competition graphs of symmetric digraphs, Discrete Math. 119 (1993) 113--122, doi: 10.1016/0012-365X(93)90121-9.
[14]B. Park, J.Y. Lee and S.-R. Kim, The m-step competition graphs of doubly partial orders, Appl. Math. Lett. 24 (2011) 811--816, doi: 10.1016/j.aml.2010.12.009.
[15]B. Park and Y. Sano, On the hypercompetition numbers of hypergraphs, Ars Combin. 100 (2011) 151--159.
[16]F.S. Roberts, Competition graphs and phylogeny graphs, in: Graph Theory and Combinatorial Biology, L. Lovasz (Ed.), Bolyai Mathematical Studies, 7, (János Bolyai Mathematical Society, Budapest, 1999) 333--362.
[17]F.S. Roberts and L. Sheng, Phylogeny graphs of arbitrary digraphs, Mathematical Hierarchies and Biology (Piscataway, NJ, 1996) DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 37 Amer. Math. Soc. (1997) 233--237.
[18]F.S. Roberts and L. Sheng, Phylogeny numbers, Discrete Appl. Math. 87 (1998) 213--228, doi: 10.1016/S0166-218X(98)00058-4.
[19]F.S. Roberts and L. Sheng, Phylogeny numbers for graphs with two triangles, Discrete Appl. Math. 103 (2000) 191--207, doi: 10.1016/S0166-218X(99)00209-7.
[20]Y. Sano, Characterizations of competition multigraphs, Discrete Appl. Math. 157 (2009) 2978--2982, doi: 10.1016/j.dam.2009.04.010.
[21]Y. Sano, The competition-common enemy graphs of digraphs satisfying Conditions C(p) and C'(p), Congr. Numer. 202 (2010) 187--194.
[22]D.D. Scott, The competition-common enemy graph of a digraph, Discrete Appl. Math. 17 (1987) 269--280, doi: 10.1016/0166-218X(87)90030-8.
[23]M. Sonntag and H.-M. Teichert, Competition hypergraphs, Discrete Appl. Math. 143 (2004) 324--329, doi: 10.1016/j.dam.2004.02.010.
[24]Y. Wu and J. Lu, Dimension-2 poset competition numbers and dimension-2 poset double competition numbers, Discrete Appl. Math. 158 (2010) 706--717, doi: 10.1016/j.dam.2009.12.001.

Received 2 November 2011
Revised 26 July 2012
Accepted 30 July 2012