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Abstract

A Roman dominating function on a graph G = (V,E) is a function
f :V (G) −→ {0, 1, 2} such that every vertex u for which f(u) = 0 is ad-
jacent to at least one vertex v with f(v) = 2. The weight of a Roman
dominating function is the value w(f) =

∑

u∈V (G) f(u). The minimum
weight of a Roman dominating function on a graph G is called the Roman
domination number of G, denoted by γR(G). In 2009, Chambers, Kinner-
sley, Prince and West proved that for any graph G with n vertices and
maximum degree ∆, γR(G) ≤ n + 1 − ∆. In this paper, we give a charac-
terization of graphs attaining the previous bound including trees, regular
and semiregular graphs. Moreover, we prove that the problem of decid-
ing whether γR(G) = n + 1 − ∆ is co-NP-complete. Finally, we provide
a characterization of extremal graphs of a Nordhaus–Gaddum bound for
γR(G) + γR

(

G
)

, where G is the complement graph of G.
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1. Introduction

Let G =
(

V (G), E(G)
)

be a simple graph of order |V (G)| = |V | = n(G). For
every vertex v ∈ V , the open neighborhood N(v) is the set

{

u ∈ V (G) : uv ∈
E(G)

}

and the closed neighborhood of v is the set N [v] = N(v)∪{v}. The degree
of a vertex v of G is degG(v) =

∣

∣N(v)
∣

∣. By ∆(G) = ∆ and δ(G) = δ we denote
the maximum degree and the minimum degree of the graph G, respectively. A
vertex of degree one is called a leaf, and its neighbor is called a support vertex.
A set S ⊂ V is independent if no two vertices in S are adjacent. For any S ⊆ V ,
we denote the subgraph of G induced by S as G[S].

We write Kn for the complete graph of order n, Pn for the path of order n, Cn

for the cycle of order n, and K1,n with n ≥ 1, for the star of order n+1. A tree is a
connected graph with no cycles. A graph G of order at least two is called regular

if its vertices have the same degree and semiregular if ∆(G) − δ(G) = 1. For
simplicity, a regular graph each of whose vertices has degree r is called r-regular.

A subset S ⊆ V is a dominating set of G if every vertex in V \ S has a
neighbor in S, that is,

∣

∣N [v] ∩ S
∣

∣ ≥ 1 for all v ∈ V . The domination number

γ(G) is the minimum cardinality of a dominating set of G.
A Roman dominating function (RDF) on a graph G = (V,E) is a function

f :V −→ {0, 1, 2} such that every vertex u for which f(u) = 0 is adjacent to at
least one vertex v with f(v) = 2. The weight of a Roman dominating function
is the value w(f) =

∑

u∈V f(u). The minimum weight of a Roman dominating
function on a graph G is called the Roman domination number of G, denoted
by γR(G). A Roman dominating function of minimum weight is called a γR-
function. In the whole paper, the function f will be denoted f =

(

V0, V1, V2

)

,
where Vi =

{

v ∈ V : f(v) = i
}

for i ∈ {0, 1, 2}. The Roman domination number
was introduced by Cockayne et al. [3] in 2004 and was inspired by the works
of ReVelle and Rosing [7] and Stewart [8]. Since its introduction, more than a
hundred papers have been published on various aspects of Roman domination in
graphs (for examples, see list of references).

The following upper bound on the Roman domination number provided by
Chambers et al. [2] will be the focus of our work.

Proposition 1 (Chambers et al. [2]). If G is a graph of order n with maximum

degree ∆(G), then γR(G) + ∆ (G) ≤ n+ 1.

In this paper, we examine classes of extremal graphs for the inequality
γR(G)+∆ (G) ≤ n+1. We give a characterization of trees, regular and semireg-
ular graphs that achieve equality in the inequality. Moreover, we prove that the
problem of deciding whether γR(G) = n+1−∆(G) is co-NP-complete. Finally,
we provide a characterization of extremal graphs of a Nordhaus–Gaddum bound
for γR(G) + γR

(

G
)

, where G is the complement graph of G. Such a bound will
subsequently be substantially improved for graphs G of order n ≥ 160.
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2. Preliminary Results

We begin by recalling some important results that will be useful in our investi-
gations.

Proposition 2 (Cockayne et al. [3]). For every graph G, γR(G) ≤ 2γ(G).

Proposition 3 (Cockayne et al. [3]). If G is a path Pn or a cycle Cn, then

γR(G) =
⌈

2n
3

⌉

.

Theorem 4 (Chambers et al. [2]). If G is a connected graph of order n ≥ 3,
then γR(G) ≤ 4n

5 , with equality if and only if G is C5 or is obtained from n
5P5 by

adding a connected subgraph on the set of centers of the components of n
5P5.

Restricted to graphs with minimum degree at least two, Chambers et al. [2]
improved the upper bound of Theorem 4. Consider a cycle C8 whose vertices are
labeled in order x1, x2, . . . , x8, x1. Let F1 be the graph obtained from the cycle
C8 by adding the edge x1x5, and F2 the graph obtained from the cycle C8 by
adding the edges x1x5 and x2x6. Let B =

{

C4, C5, C8, F1, F2

}

.

Theorem 5 (Chambers et al. [2]). If G is a connected graph of order n with

δ(G) ≥ 2 and G /∈ B, then γR(G) ≤ 8n
11 .

Consider a cycle C7 whose vertices are labeled in order x1, x2, . . . , x7, x1. Let
M1,M2,M3 and M4 be four graphs obtained from the cycle C7 as follows: M1 is
obtained by adding the edge x1x4; M2 is obtained by adding the edges x1x4 and
x2x5; M3 is obtained by adding the edges x1x4, x2x5 and x1x5; M4 is obtained by
adding edges x3x6, x3x7. Let M5 be the graph of order 7 obtained from two dis-
joint cycles C4 sharing the same vertex. Let A =

{

C4, C7,M1,M2,M3,M4,M5

}

.

Theorem 6 (McCuaig and Shepherd [5]). If G is a connected graph of order n
with δ (G) ≥ 2 and G /∈ A, then γ(G) ≤ 2n

5 .

Observation 7. Let G be a graph of minimum degree δ (G) ≥ 2. If γR(G) +
∆(G) = n+ 1, then G is connected.

Proof. Let G1, G2, . . . , Gk be the components of G. Without loss of generality,
let ∆(G) = ∆

(

Gk

)

. Clearly n−∆(G) + 1 = γR(G) =
∑k

i=1γR
(

Gi

)

, and each Gi

satisfies γR
(

Gi

)

≤ n
(

Gi

)

− ∆
(

Gi

)

+ 1 (by Proposition 1). Using the fact that
∆
(

Gi

)

≥ δ (G) ≥ 2 for each i, it follows that

n−∆(G) + 1 = γR(G) =
∑k

i=1γR
(

Gi

)

≤
∑k

i=1

(

n
(

Gi

)

−∆
(

Gi

)

+ 1
)

≤ n−∆(G)− 2(k − 1) + k = n−∆(G)− k + 2,

and thus k = 1, that is G is connected.
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In the next, we give a necessary condition for connected graphs G with
γR(G) + ∆(G) = n + 1. For any vertex vertex v ∈ V (G), we write N(v) =
V (G)−N [v]. We also denote by m

(

N(v), N(v)
)

the number of edges having an
endvertex in N(v) and the other endvertex in N(v).

Proposition 8. Let G be a graph of order n with maximum degree ∆(G). If

γR(G) + ∆(G) = n+ 1, then for every vertex v of maximum degree we have

(1) Every vertex of N(v) is adjacent to at most two vertices in N(v).

(2) Each component of G
[

N(v)
]

is either K1 or K2.

Proof. Let G be a graph with γR(G) + ∆(G) = n + 1 and let v a vertex of
maximum degree. Consider an RDF f that assigns the value 2 to v, 0 to every
neighbor of v and 1 to the remaining vertices. Clearly w(f) = n+ 1−∆(G) and
thus f is a γR(G)-function.

Now suppose to the contrary that v has a neighbor w having at least three
neighbors in N(v). Then reassigning w a 2 instead of 0 and each vertex of
N (w)∩N(v) a 0 instead of 1 produces an RDF with smaller weight than γR(G),
a contradiction. Hence (1) follows. Moreover, if a vertex x ∈ N(v) has two
neighbors inN(v), say y and z, then reassigning x a 2 instead of 1, and reassigning
y and z a 0 instead of 1 produces an RDF with smaller weight than γR(G), a
contradiction. Hence (2) follows.

We note that the converse of Proposition 8 is not true as can be seen by the
tree T obtained from a star K1,3 by subdividing each edge of the star twice. Then
γR(T ) = 7 < n+ 1−∆(T ) = 8.

In the next we show that if a graph G has a vertex with maximum degree
satisfying items (1) and (2) of Proposition 8, then G has a Roman domination
number bounded below by n− 1− ∆(G).

Proposition 9. Let G be a connected graph of order n and let v be a vertex of

degree ∆(G) such that every vertex in N(v) is adjacent to at most two vertices in

N(v) and each component of G
[

N(v)
]

is either K1 or K2. Then γR(G)+∆(G) ≥
n− 1.

Proof. Let f = (V0, V1, V2) be a γR(G)-function. Let A = N(v) ∩ V2 and let
B be the set of vertices of N(v) ∩ V0 that have no neighbor in N(v) ∩ V2. Let
C = N(v)− B. Clearly, each vertex of B has a neighbor in A, and f(C) = |C| .
Since each vertex of A has at most two neighbors in N(v), |B| ≤ 2 |A|. Therefore,
w(f) ≥ |C|+ 2 |A| ≥ |C|+ |B| =

∣

∣N(v)
∣

∣ = n− 1−∆(G).
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3. Graphs G of Order n Satisfying γR(G) + ∆ = n+ 1

In this section we provide a characterization of some classes of graphs G with
γR(G) + ∆(G) = n + 1, including regular graphs, trees and semiregular graphs.
Using Proposition 3, one can easily check that the only paths and cycles attaining
equality in the upper bound of Proposition 1 are P2, P3, P4, P5, C3, C4 and C5.
Trivially, graphs G with ∆(G) = 1 satisfy γR(G) + ∆(G) = n+ 1. For graphs G
with ∆(G) = 2 we have the following straightforward observation.

Observation 10. If G is a graph of order n with maximum degree ∆(G) = 2,
then γR(G) + ∆(G) = n + 1 if and only if G = pK1 ∪ qK2 ∪ H, where H ∈
{

P3, P4, P5, C3, C4, C5

}

and p+ 2q +
∣

∣V (H)
∣

∣ = n.

Moreover, the following observation shows that equality is attained in the
upper bound of Proposition 1 for every graph G of order n with ∆(G) ≥ n − 3.
We omit the details of the proof.

Observation 11. Let G be a graph of order n and maximum degree ∆(G). If

∆(G) ≥ n− 3, then γR(G) + ∆(G) = n+ 1.

We now consider regular graphs.

Theorem 12. Let G be a ∆-regular graph of order n and degree ∆(G) ≥ 1. Then
γR(G) + ∆(G) = n+ 1 if and only if ∆(G) ∈ {1, n− 3, n− 2, n− 1}.

Proof. Let G be a regular graph with γR(G) + ∆(G) = n + 1. If ∆(G) = 1,
then we are done. Hence assume that ∆(G) ≥ 2. Note that G is connected (by
Observation 7). Now, let v be a vertex of G. According to Proposition 8 and the
fact that G is regular, we have 2 |N(v)| ≥ m

(

N(v), N(v)
)

≥ (∆(G) − 1)
∣

∣N(v)
∣

∣,
which provides n ≤ ∆(G) + 3 + 2

∆(G)−1 .

If ∆(G) = 2, then n ≤ 7 and by Observation 10, we obtain G ∈
{

C3, C4, C5

}

,
that is ∆(G) ∈ {n − 1, n − 2, n − 3}. If ∆(G) = 3, then n ≤ 7, and since
cubic graphs have an even order we deduce that n ∈ {4, 6}, that is G is either
K4, K3,3 or the complement of C6. Clearly, all these cubic graphs have ∆(G) ∈
{n− 1, n− 2, n− 3}. Finally, if ∆(G) ≥ 4, then n ≤ ∆(G) + 3 + 2

∆(G)−1 leads to

∆(G) ≥ n− 3.
The converse follows from Observations 10 and 11.

In the aim to characterize all trees T of order n for which γR(T ) + ∆(T ) =
n+ 1, we give some additional definitions and notations.

Let T be a tree with a unique vertex of maximum degree ∆ ≥ 3, say x, where
each leaf of T is at distance at most three from x and such that all components
in T − x are paths of order at most 5 (for example, see Figure 1). Let Hi be a
component of T − x of order i, where i ∈ {1, 2, . . . , 5}. Clearly, since T is a tree,
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Figure 1. Example of a tree T , where each component of T − x is a path of order at
most 5.

Hi contains exactly one vertex of N(x). Let n1 be the number of components H1,
n2 the number of components H2, n3 the number of components H3 having a leaf
belonging to N(x), n4 the number of components H3 whose center vertices belong
to N(x), n5 the number of components H4 having a support vertex belonging to
N(x) and n6 be the number of components H5 whose center vertices belong to
N(x). Note that

∑6
i=1 ni = ∆(T ).

Let T be the family of trees T with only two adjacent vertices of maximum
degree three such that every leaf of T is at distance at most two from a vertex of
maximum degree. Note that any tree T ∈ T has order n ∈ {6, 7, 8, 9, 10}.

Now, we are ready to characterize the class of trees T for which γR (T ) =
n−∆+ 1.

Theorem 13. Let T be a nontrivial tree of order n and maximum degree ∆(T ).
Then γR(T ) + ∆(T ) = n+ 1 if and only if T ∈

{

P2, P3, P4, P5

}

or T is one of

the trees defined above such that either n4 + n5 + n6 = 0 and (n1 ≥ 1 or n2 ≥ 2)
or n4 + n5 + n6 6= 0 and n1 + n2 ≥ 2.

Proof. Let T be a nontrivial tree with γR (T ) = n−∆(T )+ 1. If ∆(T ) ∈ {1, 2},
then by Proposition 3, we have T ∈

{

P2, P3, P4, P5

}

. Hence let ∆(T ) ≥ 3. We
note that if v is a vertex of degree ∆(T ) ≥ 4, then, since T is a tree, and every
vertex of N(v) has at most two neighbors in N(v) (by Proposition 8), vertex v is
the unique vertex of maximum degree. Suppose now that ∆(T ) = 3. It is easy to
see that if T has two non-adjacent vertices of degree 3, then γR(T )+∆(T ) < n+1.
Hence T has either one vertex of degree 3 or two adjacent vertices of degree 3.
Assume that T has two adjacent vertices of degree 3, say x and y. Since each of
x and y satisfies conditions (1) and (2) of Proposition 8, we deduce that each leaf
of T is at distance at most 2 from either x or y. Hence T ∈ T .

From now on, we may assume that T has a unique vertex of degree ∆(T ) ≥ 3,
say v. By Proposition 8, each component in T − v is a path of order at most 5
containing exactly one vertex of N(v). Also, if x ∈ N(v) and Hi is a nontrivial
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component of T − v of order i, then x is either a leaf of Hi if i ∈ {2, 3} or a
center vertex of Hi if i ∈ {3, 5} or a support vertex of Hi if i = 4. We also
note that n(T ) = 5n6 + 4n5 + 3n4 + 3n3 + 2n2 + n1 + 1, ∆(T ) =

∑6
i=1 ni and

γR(T ) = 4n6 + 3n5 + 2n4 + 2n3 + n2 + 2. Consider the following two cases.

Case 1. n4 + n5 + n6 = 0. Suppose that n1 = 0 and n2 = 0. Then all compo-
nents in T −v are H3 having a leaf belonging to N(v). Define the function f on T
by assigning a 2 to every support vertex of H3, a 1 to v and a 0 to the remaining
vertices of T. It follows that f

(

V (T )
)

= 2n3 + 1 < γR(T ), a contradiction. Now
suppose that n1 = 0 and n2 = 1. Then all components in T − v but one are H3

having a leaf belonging to N(v). Define the function f on T by assigning a 2
to every support vertex of H3, a 2 to N(v) ∩ V (H2) and a 0 to the remaining
vertices of T. It follows that f

(

V (T )
)

= 2n3 + 2 < γR(T ), a contradiction too.
Hence either n1 ≥ 1 or n2 ≥ 2.

Case 2. n4+n5+n6 6= 0. Suppose that n1+n2 ≤ 1. Define a function f on T
by assigning a 0 to v and to any component Hi so that f

(

V (Hi)
)

= γR
(

Hi

)

and
the vertex of a Hi belonging to N(v) received a 2. Note that such an assignment
is possible for any component Hi with i ∈ {3, 4, 5}. It follows that f

(

V (T )
)

=
4n6+3n5+2n4+2n3+2n2+n1 and since n1+n2 ≤ 1, we have f

(

V (T )
)

< γR(T ),
a contradiction. Hence n1 + n2 ≥ 2.

Conversely, if T ∈
{

P2, P3, P4, P5

}

, then clearly γR(T ) + ∆(T ) = n + 1.
Suppose that T ∈ T . Then T has order n = 6 + t, where t is the number of
leaves at distance two from a vertex of degree three. One can easily check that
γR(T ) = 4 + t = n + 1 −∆(T ). Finally, let T be a tree with a unique vertex of
degree ∆(T ) ≥ 3, say v, such that either (n4+n5+n6 = 0 and n1 ≥ 1 or n2 ≥ 2)
or (n4 + n5 + n6 6= 0 and n1 + n2 ≥ 2). Observe that for every γR(T )-function
f , f

(

V (Hi)
)

= γR
(

Hi

)

for every i ∈ {3, 4, 5}. Also vertex v can be assigned
a 2 under f in each of the two situations that T can have. Therefore a simple
calculation shows that γR(T ) = 2 + n2 + 2n3 + 2n4 + 3n5 + 4n6 = n+ 1−∆(T ).

Theorem 14. Let G be a semiregular graph of order n and maximum degree

∆(G) = ∆. Then γR(G) + ∆ = n + 1 if and only if G fulfills one of the

following:

(a) ∆ ≥ n− 3,

(b) G = pK1 ∪ qK2 with p ≥ 1, q ≥ 1 and p+ 2q = n,

(c) G = qK2 ∪H with 2q + |V (H)| = n, where H ∈
{

P3, P4, P5, C3, C4, C5

}

if

q 6= 0 and H ∈
{

P3, P4, P5

}

if q = 0,

(d) G is isomorphic to one of the nine graphs in Figure 2.
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Figure 2. Connected semiregular extremal graphs of order n ∈ {7, 8, 9}.

Proof. Let G be a semiregular graph of order n such that γR(G) + ∆ = n + 1.
Note that every vertex of G has degree ∆ or ∆ − 1. If ∆ = 1, then clearly
G = pK1 ∪ qK2 with p ≥ 1 and q ≥ 1 (since G is semiregular). If ∆ = 2, then
by Observation 10 and since δ(G) = 1, G = qK2 ∪ H, where H ∈

{

P3, P4, P5

}

if q = 0, and H ∈
{

P3, P4, P5, C3, C4, C5

}

if q 6= 0. For the next we can assume
that ∆ ≥ 3. Since δ(G) ≥ 2, by Observation 7, G is connected. Let v be a
vertex of degree maximum. According to Proposition 8, m

(

N(v), N(v)
)

satisfies
(∆−2)

∣

∣N(v)
∣

∣ ≤ m
(

N(v), N(v)
)

≤ 2 |N(v)|. Therefore (∆−2)(n−∆−1) ≤ 2∆,
and thus

(1) ∆ + 1 ≤ n ≤ ∆+ 3 +
4

∆− 2
.

Clearly, for ∆ ≥ 7 we have ∆ ≥ n − 3 since 4
∆−2 < 1. Assume now that

∆ = 6. Thus by (1) we have n ∈ {7, 8, 9, 10}. If n ∈ {7, 8, 9}, then ∆ ≥ n−3 and
we are done. If n = 10, then G

[

N(v)
]

has order 3 and contains an isolated vertex
whose neighbors are all in N(v). Hence m

(

N(v), N(v)
)

≥ 2 (∆− 2) + (∆− 1) =
13 > 2 |N(v)|, implying that such a graph does not exist. Therefore it remains
to examine the cases ∆ ∈ {3, 4, 5}. Consider each case separately.

Case 1. ∆ = 3. By (1) we have n ∈ {4, 5, . . . , 10}. If n ∈ {4, 5, 6}, then
∆ ≥ n−3. Assume that n = 7. Then γR(G) = 5, and by Proposition 2, γ(G) ≥ 3.
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So by Theorem 6, γ(G) > 2n
5 and since M3, M4, M5 are not semiregular, we

deduce that G ∈
{

M1,M2

}

. Assume now that n = 8. Hence γR(G) = 6 > 8n
11 .

By Theorem 5, G ∈ B, and clearly G ∈
{

F1, F2

}

. The remaining cases (n = 9
and n = 10) are excluded by using Theorem 5.

Case 2. ∆ = 4. By (1) we have n ∈ {5, 6, 7, 8, 9}. If n ∈ {5, 6, 7}, then
∆ ≥ n− 3. The remaining two situations are considered separately. Let N(v) =
{a, b, c, d}.

Subcase 2.1. n = 8. Then γR(G) = 5. Since G
[

N(v)
]

has order 3 and
contains an isolated vertex, 2∆ = 8 ≥ m

(

N(v), N(v)
)

≥ 2 (∆− 2)+(∆− 1) = 7.
Let N(v) = {x, y, z}. Clearly, sincem

(

N(v), N(v)
)

≤ 8, N(v) is not independent.
Without loss of generality, assume that xy ∈ E, and thus xz, yz /∈ E (by Propo-
sition 8). Since |N(z) ∩N(v)| ≥ 3, we may assume that {a, b, c} ⊆ N(z). By
Proposition 8, |N(t) ∩ {x, y}| ≤ 1 for t ∈ {a, b, c}. Moreover, since degG(x) ≥ 3
and degG(y) ≥ 3, we have, without loss of generality, ax, bx, cy and dy ∈ E.

If m
(

N(v), N(v)
)

= 7, then N(d) ∩ {a, b, c} 6= ∅ (since G is semiregular). If
cd ∈ E, then

(

{v, a, b, d, y, z}, ∅, {c, x}
)

is an RDF of G with weight 4, a contradic-
tion. Thus cd /∈ E. Up to isomorphism, assume that da ∈ E. Since degG(a) = 4,
ab and ac /∈ E. Now clearly, if bc ∈ E, then

(

{v, b, d, x, y, z}, ∅, {a, c}
)

is an RDF
of G with weight 4, a contradiction. Hence bc /∈ E, and we conclude that G = R1.

If m
(

N(v), N(v)
)

= 8, then we must have zd ∈ E. Let us examine the
existence or not of the edges between vertices of N(v). As G is semiregular of
maximum degree 4, G[N(v)] contains at most two independent edges. If N(v) is
independent, then G = R2. Now assume that G[N(v)] contains exactly one edge.
If ab ∈ E, then

(

{v, b, c, d, x, z}, ∅, {a, y}
)

is an RDF of G with weight 4. If cd ∈ E,
then

(

{v, a, b, d, y, z}, ∅, {c, x}
)

is an RDF of G with weight 4. Clearly, whatever
the edge among bc, ac, ad or bd we obtain G = R3. Suppose now that G[N(v)]
contains two independent edges. Seeing the previous situations, ab /∈ E and
bc /∈ E. Thus the only possibilities are either (bc and ad ∈ E) or (ac and bd ∈ E).
For both situations, one can easily construct an RDF of G with weight 4.

Subcase 2.2. n = 9. Then γR(G) = 6. Since
∣

∣N(v)
∣

∣ = 4, m
(

N(v), N(v)
)

= 8.
It follows that G

[

N(v)
]

= 2P2, where each vertex of N(v) has exactly two
neighbors in N(v) and every vertex of N(v) has two neighbors in N(v). Let
N(v) = {x, y, w, z}. Without loss of generality, we assume that xy,wz ∈ E.
Consider the subgraphH, where V (H) = V (G)\{v} and E(H) = m

(

N(v), N(v)
)

.
Since H is a 2-regular bipartite graph, H = 2C4 or C8.

Assume first that H = 2C4. If x and y belong to the same cycle C4,
then

(

{y, a, b, c, d, z}, {v}, {x,w}
)

is an RDF of G with weight 5, a contradic-
tion. Hence we may assume, without loss of generality, that the vertices of one
of the two cycles are in order a, x, c, w, and b, y, d, z are on the other cycle. But
then

(

{y, a, b, c, d, w}, {v}, {x, z}
)

is an RDF of G with weight 5, a contradiction.
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Assume now that H = C8. Up to isomorphism, there are two possible sit-
uations, H1 : a-x-d-z-c-w-b-y-a or H2 : a-x-b-w-d-y-c-z-a. Note that by tak-
ing into account the edges xy and wz, H1 has two disjoint triangles and H2

has no triangle. If H1 occurs, then
(

{a, b, c, d, y, w}, {v}, {x, z}
)

is an RDF of
G with weight 5, a contradiction. Thus H2 occurs. Now if N(v) is indepen-
dent, then G = R4. Hence assume that N(v) is not independent. If ab ∈ E,
then

(

{v, b, c, d, z, x}, {w}, {a, y}
)

is an RDF of G with weight 5, a contradic-
tion. Hence ab /∈ E, and likewise ac, cd and bd /∈ E. Now if ad and bc ∈ E,
then

(

{v, c, d, w, z, x}, {y}, {a, b}
)

is an RDF of G with weight 5, a contradiction.
Hence either ad ∈ E or bc ∈ E. Whatever the case, G = R5.

Case 3. ∆ = 5. By (1) we have n ∈ {6, 7, 8, 9} . If n ∈ {6, 7, 8}, then ∆ ≥
n−3. Hence we assume that n = 9, and so γR(G) = 5. Since G

[

N(v)
]

has order 3
and contains an isolated vertex, we have 2∆ = 10 ≥ m

(

N(v), N(v)
)

≥ 2 (∆− 2)+
(∆− 1) = 10, and so m

(

N(v), N(v)
)

= 10. Let N(v) = {a, b, c, d, e} and N(v) =
{x, y, z}. Without loss of generality, we assume that xy ∈ E and z is isolated in
G
[

N(v)
]

. Since m
(

N(v), N(v)
)

= 10, |N(x) ∩N(v)| = |N(y) ∩N(v)| = 3, and
|N(z) ∩N(v)| = 4. Let N(z) = {a, b, c, d}. Clearly, x and y have at least one
common neighbor in N(v). Since each vertex of N(v) has exactly two neighbors
in N(v) and N(z) = {a, b, c, d}, we deduce that e ∈ N(x) ∩ N(y). But then
(

{x, y, a, b, c, d, v}, ∅, {z, e}
)

is an RDF of G with weight 4, a contradiction.
The converse is easy to show by examining each graph separately.

4. Complexity Result

In this section we consider the complexity of the problem of deciding whether a
graph G has γR(G) = n−∆(G)+1, to which we shall refer as MRDF(n−∆+1).

MRDF(n−∆+ 1)
INSTANCE: A graph G = (V,E).
QUESTION: Does G have a minimum RDF f with f(V ) = n−∆(G) + 1?

We show that this problem is co-NP-complete by reducing the 3-satisfiability
problem (3-SAT) to the problem of deciding whether γR(G) ≤ n−∆(G) is NP-
complete. Recall that the 3-SAT problem is a well known NP-complete problem
[4].

3-SAT
INSTANCE: A collection C =

{

C1, C2, . . . , Cq

}

of clauses over a finite set X of
variables such that |Cj | = 3 for j = 1, 2, . . . , q.
QUESTION: Is there a truth assignment for X that satisfies all the clauses in C?
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RDF(n−∆)
INSTANCE: A graph G = (V,E).
QUESTION: Does G have an RDF f with f(V ) ≤ n−∆(G)?

Theorem 15. Problem RDF(n−∆) is NP-complete.

Proof. RDF(n−∆) is a member of NP, since we can check in polynomial time
that a function f : V → {0, 1, 2} has weight at most n −∆(G) and is a Roman
dominating function. Now let us show how to transform any instance of 3-SAT
into an instance G of RDF(n−∆) so that one of them has a solution if and only
if the other one has a solution.

Let I be an arbitrary instance of 3-SAT for the set of clauses C =
{

C1, C2, . . . ,
Cq

}

on the set of variables X =
{

x1, x2, . . . , xp
}

. We construct a graph G(I)
such that I has a satisfying truth assignment if and only if G(I) has an RDF
f =

(

V0, V1, V2

)

with f(V ) ≤ n−∆(G).
Corresponding to each clause Ci, we create a vertex labeled ci. Corresponding

to each variable xi ∈ X we build a copy of the graph K4 − e whose vertices are
labeled xi, xi, ui, vi, where xi and xi are the vertices of degree 3 of K4 − e. Next
add a path P2 : y-w and join y to every vertex of

{

xi, xi : 1 ≤ i ≤ p
}

∪
{

cj :
1 ≤ j ≤ q

}

. Finally, add three edges from each clause vertex ci to the three
vertices corresponding to the three literals in clause Ci (for example, see Figure
3). Clearly, G(I) has order 4p + q + 2 and y is a vertex of maximum degree
∆ (G(I)) = 2p + q + 1. We shall show that the given instance of 3-SAT has a
satisfying truth assignment if and only if the graph G(I) has an RDF f with
f(V ) ≤ n−∆(G).

Let the given instance of 3-SAT have a satisfying truth assignment A. For
each variable xi, if A

(

xi
)

=TRUE, then let f
(

xi
)

= 2. Otherwise, let f
(

xi
)

= 2.
Also, assign a 1 to w and a 0 to all the remaining vertices. It is easy to see that
the function f is an RDF of the graph G(I) of weight f(V ) = 2p+1 = n−∆(G),
since exactly one of xi and xi is in V2, and dominates all vertices assigned a 0.
In particular, every vertex ci has at least one neighbor in V2 because A assigns
at least one literal to TRUE in every clause Ci.

Conversely, assume that G(I) has an RDF f = (V0, V1, V2) of weight f(V ) ≤
n − ∆(G). If f(y) = 2, then for every i, we need two legions to defend ui
and vi, implying that f(V ) = 2p + 2 > n − ∆(G) . Hence f(y) ∈ {0, 1}. If
f(y) = 1, then f(w) = 1 and as previously we need 2p legions to defend all
ui and vi which leads to a contradiction too. Therefore f(y) = 0 and thus
f(w) > 0. Since f(V ) ≤ n − ∆(G) , it is easy to see that for each subgraph
induced by

{

xi, xi, ui, vi
}

, we must have either f
(

xi
)

= 2 or f
(

xi
)

= 2. Now
since

∑p
i=1f

(

ri
)

+ f (w) ≥ 2p+1 = n−∆(G) with ri ∈
{

xi, xi
}

, we deduce that
f(w) = 1 and f

(

ci
)

= 0 for every i. It follows that the set V2 dominates the set
of clause vertices. Therefore, the given instance of 3-SAT has a satisfying truth
assignment A, where A

(

xi
)

=TRUE if and only if f
(

ri
)

= 2.
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Figure 3. A construction of G (I) for
(

x1 ∨ x2 ∨ x3

)

∧
(

x1 ∨ x2 ∨ x3

)

∧
(

x2 ∨ x3 ∨ x4

)

∧
(

x2 ∨ x3 ∨ x4

)

.

Corollary 16. Problem MRDF(n−∆+ 1) is co-NP-complete.

Proof. Given any instance G, problem MRDF(n−∆+1) has an answer YES if
and only if Problem RDF(n−∆) has an answer NO. Since Problem RDF(n−∆)
is NP-complete, by Theorem 15, we conclude that Problem MRDF(n −∆+ 1)
is co-NP-complete.

5. Nordhaus-Gaddum Inequalities

In [2], Chambers et al. gave the following Nordhaus-Gaddum bound for γR(G)+
γR

(

G
)

in terms of the order of the graph G.

Theorem 17 (Chambers et al. [2]). If G is graph of order n ≥ 3, then

γR(G) + γR
(

G
)

≤ n+ 3.

Furthermore, equality holds only when G or G is C5 or n
2K2.

According to Theorem 17, if G is a graph different from C5,
n
2K2 or n

2K2,
then γR(G) + γR

(

G
)

≤ n + 2. In the sequel, we provide a characterization of
graphs G of order n for which γR(G) + γR

(

G
)

= n + 2. For this purpose, we
define the following family of graphs.
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• H0 =
{

C6, C7, C8, Ci ∪ Cj ,where i, j ∈ {3, 4, 5}
}

.

• H1 =
{

pK1 ∪ qK2 : p ≥ 1, q ≥ 1 and p+ 2q = n
}

,

• H2 =
{

qK2 ∪H with 2q + |V (H)| = n, where H ∈ {P3, P4, P5, C3, C4, C5}
if q 6= 0 and H ∈ {P3, P4, P5} if q = 0

}

.

• H3 =
{

F1, F2,M1,M2

}

.

Theorem 18. Let G be a graph of order n ≥ 3 such that G /∈
{

C5,
n
2K2,

n
2K2

}

.

Then γR(G)+ γR
(

G
)

≤ n+2, with equality if and only if G or G ∈
{

Kn

}

∪H0 ∪
H1 ∪H2 ∪H3.

Proof. Clearly, the upper bound follows from Theorem 17.
Assume now that γR(G) + γR

(

G
)

= n+ 2. By Proposition 1, we have

n+ 2 = γR(G) + γR
(

G
)

≤ n−∆(G) + 1 + n−∆
(

G
)

+ 1

= n−∆(G) + δ(G) + 3.

Hence ∆(G)− δ(G) ≤ 1. Therefore G is either regular or semiregular. Consider
the two cases:

Case 1. G is a regular graph. Hence G is also regular. Clearly, γR(G) +
γR

(

G
)

= n+2, implies that either γR(G) = n−∆(G)+1 and γR
(

G
)

= ∆(G)+1
or γR(G) = n − ∆(G) and γR

(

G
)

= ∆(G) + 2. Without loss of generality,
assume that γR(G) = n − ∆(G) + 1 and γR

(

G
)

= ∆(G) + 1. By Theorem 12,

and since G /∈
{

C5,
n
2K2,

n
2K2

}

, we obtain that ∆(G) ∈ {n − 3, n − 1}. Clearly,
if ∆(G) = n − 1, then G = Kn. Thus assume that ∆(G) = n − 3. Then each
component of G is a cycle. Now using the fact that γR

(

G
)

= ∆(G)+1 = n−2 and
whether G is connected or not, we deduce that G = C6, C7, C8 or G = Ci ∪ Cj ,
where i, j ∈ {3, 4, 5}. Hence G ∈ H0.

Case 2. G is a semiregular graph. Note that G is also semiregular. In
this case γR(G) + γR

(

G
)

= n + 2 implies that γR(G) = n − ∆(G) + 1 and
γR

(

G
)

= n − ∆
(

G
)

+ 1. By Theorem 14, G and G fulfill one of the four items
of that theorem. Since ∆(G) + ∆

(

G
)

= n, we may assume, without loss of
generality, that ∆(G) ≤ n

2 . By Theorem 14, ∆ (G) ≤ 4. Now if ∆ (G) = 1, then
G = pK1 ∪ qK2 with p, q ≥ 1 and p + 2q = n. Hence G ∈ H1. If ∆ (G) = 2,
then G = qK2 ∪ H with 2q + |V (H)| = n, where H ∈

{

P3, P4, P5

}

if q = 0,
and H ∈

{

P3, P4, P5, C3, C4, C5

}

if q 6= 0. Hence G ∈ H2. If ∆ (G) = 3, then
G ∈

{

F1, F2,M1,M2

}

= H3. Finally, if ∆ (G) = 4, then G ∈
{

R1, R2, . . . , R5

}

.
But since G /∈

{

R1, R2, . . . , R5

}

we have γR
(

G
)

< n−∆
(

G
)

+ 1, which leads to
a contradiction.

The converse is easy to see and we omit the details.
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We close this section by improving the bound of Theorem 17 for all graphs
G when n (G) ≥ 160. To do this, we need the use of the following Nordhaus-
Gaddum bound for γR(G)γR

(

G
)

given in [2].

Theorem 19 (Chambers et al. [2]). If G is a graph of order n ≥ 160, then

γR(G)γR
(

G
)

≤
16n

5
,

with equality only when G or G is n
5C5.

Theorem 20. If G is a graph of order n ≥ 160 such that every component of G
or G is of order at least 3, then

γR(G) + γR
(

G
)

≤
4n

5
+ 4,

with equality only when G or G is n
5C5.

Proof. By Theorem 4, γR(G) ≤ 4n
5 and γR

(

G
)

≤ 4n
5 . If γR(G) ≤ 4 or γR

(

G
)

≤

4, then γR(G)+γR
(

G
)

≤ 4n
5 +4. If γR(G) ≥ 8 and γR

(

G
)

≥ 8, then by Theorem

19, we have γR(G) ≤ 16n
5 γR

(

G
)

≤ 2n
5 and γR

(

G
)

≤ 16n
5 γR(G) ≤ 2n

5 . Hence

γR(G) + γR
(

G
)

≤ 4n
5 < 4n

5 + 4. For the next we can assume that 5 ≤ γR(G) ≤ 7

or 5 ≤ γR
(

G
)

≤ 7. It follows by Theorem 19 that γR(G) ≤ 16n
5 γR(G) ≤ 16n

25 , and

thus γR(G) + γR
(

G
)

≤ 16n
25 + 7 < 4n

5 + 4, since n ≥ 160.

Moreover, based on the previous proof, γR(G) + γR
(

G
)

= 4n
5 + 4 is only

possible when
{

γR(G), γR
(

G
)}

=
{

4n
5 , 4

}

. By Theorem 4, G = n
5C5 and the

other graph is excluded since γR
(

G
)

= 3.
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