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Abstract

For integers n ≥ k ≥ 2, let c(n, k) be the minimum number of chords
that must be added to a cycle of length n so that the resulting graph has
the property that for every l ∈ {k, k + 1, . . . , n}, there is a cycle of length
l that contains exactly k of the added chords. Affif Chaouche, Rutherford,
and Whitty introduced the function c(n, k). They showed that for every
integer k ≥ 2, c(n, k) ≥ Ωk(n

1/k) and they asked if n1/k gives the correct
order of magnitude of c(n, k) for k ≥ 2. Our main theorem answers this
question as we prove that for every integer k ≥ 2, and for sufficiently large
n, c(n, k) ≤ k⌈n1/k⌉+k2. This upper bound, together with the lower bound
of Affif Chaouche et al., shows that the order of magnitude of c(n, k) is n1/k.
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1. Introduction

An n-vertex graph is said to be pancyclic if it contains a cycle of length l for
each l ∈ {3, 4, 5, . . . , n}. There is a large amount of research on pancyclic graphs
including many papers on conditions which imply pancyclicty, as well as inves-
tigations into properties of pancyclic graphs. For more on pancyclic graphs, we
refer the reader to the recent book of George, Khodkar and Wallis [4]. Our focus
will be on an extremal function that has its roots in a function of Bondy. Let
m(n) be the minimum number of edges in a pancyclic graph on n vertices. Bondy
[2] introduced the function m(n) and stated, without proof, that

(1) n− 1 + log2(n− 1) ≤ m(n) ≤ n+ log2 n+H(n) +O(1)
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whereH(n) is the smallest integer such that (log2)
H(n)(n) < 2. To our knowledge,

the bounds given in (1) have not been improved. Nevertheless, Bondy’s problem
is quite natural and has inspired several new extremal functions. Let us take a
moment to introduce one such example before we define the extremal function
that we will focus on.

Broersma [3] asked for the minimum number of edges in a vertex pancyclic
graph on n vertices. Recall an n-vertex graph is vertex pancyclic if every vertex
lies in a cycle of length l for every l ∈ {3, 4, 5, . . . , n}. Broersma proved that

(2)
3

2
n < vp(n) ≤

⌊

5

3
n

⌋

for all n ≥ 7 where vp(n) is the minimum number of edges in a vertex pancyclic
graph with n vertices. This shows that vp(n) is linear in n, but an asymptotic
formula for vp(n) is not known. Improving either (1) or (2) would be quite
interesting.

A consequence of (1) is that if m′(n) is the minimum number of chords that
must be added to Cn to obtain a pancyclic graph, then

m′(n) = log2 n+ o(log2 n).

Similarly, (2) implies that the minimum number of chords that must be added
to Cn to obtain a vertex pancyclic graph is Θ(n). Motivated by these results,
Affif Chaouche, Rutherford, and Whitty [1] introduced the following extremal
function. For integers n ≥ 6 and k ≥ 2, let c(n, k) be the minimum number of
chords that must be added to a cycle of length n so that the resulting graph has
the property that for every integer l ∈ {k, k+1, . . . , n}, there is a cycle of length
l that contains exactly k of the added chords. Although Affif Chaouche et al. do
not confirm that c(n, k) is well defined, this is clear because if we consider any
cycle with length l ≥ k, we are at liberty to number the vertices of the cycle
in such a way that exactly k of the edges are defined by vertices that are not
numerically consecutive. By (1), we immediately get c(n, k) ≥ log2(n − 1) for
all k ≥ 2. The following result of Affif Chaouche et al. (see corollary 8 in [1])
improves this lower bound and shows that requiring each cycle to contain exactly
k of the added chords has a rather dramatic effect on the amount of chords that
must be added.

Theorem 1 (Affif Chaouche, Rutherford, Whitty [1]). Let k ≥ 1 be an integer.

For any integer n ≥ 6

c(n, k) ≥ Ω(n1/k).

In [1], it is suggested that c(n, k) lies somewhere between m′(n) = Θ(log n)
and vp(n) = Θ(n). It was left as an unsolved problem to prove a non-trivial
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upper bound on c(n, k). Our main result solves this problem completely, and
together with Theorem 1, shows that the order of magnitude of c(n, k) is n1/k.
This result comes in the form of a construction that uses the representation of
cycle lengths in a specific base dependent on n and k.

Theorem 2. Let k ≥ 2 be an integer. If n ≥ (k + 2)k, then

c(n, k) ≤ k
⌈

n1/k
⌉

+ k2.

Using Stirling’s approximation, a close look at the proof of Theorem 1, shows
that the lower bound Ω

(

n1/k
)

is asymptotic to k
en

1/k as k goes to infinity. There-
fore, our Theorem 2 is best possible up to a constant factor. In fact, we believe
that for k ≥ 2, c(n, k) = kn1/k + o

(

n1/k
)

and Theorem 2 is asymptotically best
possible.

In the next section we prove Theorem 2. Some concluding remarks are made
in Section 3. Most of the notation that we use follows that of West [6]. In
particular, Cn always denotes a cycle of length n with vertex set {1, 2, . . . , n}
whose edges are {i, i+ 1}, i ∈ {1, 2, . . . , n} together with {n, 1}.

2. Proof of Theorem 2

Let k ≥ 2 be an integer and let n ≥ (k + 2)k. In order to prove that

c(n, k) ≤ k
⌈

n1/k
⌉

+ k2,

we must show how to add at most k
⌈

n1/k
⌉

+ k2 chords to Cn so that in the
resulting graph, for each l ∈ {k, k + 1, . . . , n}, there is a cycle of length l that
contains exactly k chord edges. The construction is best described in several
steps.

Step 1. Define the graphs which will serve as the building blocks for our con-
struction. These are the graphs Gb(i, e), defined in Definition 1, and the base
chords of Gb(i, e) will be chord edges in the final construction.

Step 2. Prove that each Gb(i, e) has paths of certain lengths between two specific
vertices (see Lemma 3).

Step 3. Form the graph Hb(k) (see Definition 2) which is obtained by taking
the union of a certain collection of Gb(i, e)’s.

Step 4. Show that Hb(k) contains paths of certain lengths between two specific
vertices (see Lemma 4). Each of these paths will contain exactly k−1 edges that
will end up being chords in the final construction. Furthermore, these paths are
obtained by taking the union of paths whose existence is established in Step 2.
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Step 5. Add a few more edges to Hb(k) (see Definition 3) to obtain a graph
that has a cycle of length l for all l ∈ {k, k + 1, . . . , n− k} that contains exactly
k chords

Step 6. Finish the construction by adding a small number of chords to account
for the needed cycles of length n− k + 1, n− k + 2, . . . , n.

Having given a brief outline, let us proceed to the details.

Definition 1. Let b ≥ 3, i ≥ 1, and e ≥ 0 be integers. Let Gb(i, e) be the graph
with vertex set

{

i, i+ 1, i+ 2, . . . , i+ 2 + be+1 − be
}

and edge set

{

{j, j + 1} : i ≤ j ≤ i+ 1 + be+1 − be
}

∪
{

{i, i+ 2 + jbe} : 0 ≤ j ≤ b− 1
}

.

The vertex i is called the base point of Gb(i, e). Edges in the set

{

{i, i+ 2 + jbe} : 0 ≤ j ≤ b− 1
}

are called base chords. Edges of the form {j, j+1} are called outer edges. Figure
1, given below, shows three different Gb(i, e)’s.
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Figure 1. The graphs G4(1, 0), G4(6, 1), and G4(20, 2).



Pancyclicity When Each Cycle Contains k Chords 5

Observe that in Gb(i, e) there are exactly be+1−be+2 outer edges and exactly
b base chords. The vertices of the form bx + 2x play an important role in our
construction, so we define

q(x) = bx + 2x,

with x ∈ {0, 1, . . . , k}.

Lemma 3. For each ce ∈ {0, 1, . . . , b− 1}, the graph Gb(q(e), e) contains a path

P of length 1+ceb
e from the vertex q(e) to the vertex q(e+1) such that P contains

exactly one base chord.

Proof. Let ce ∈ {0, 1, 2, . . . , b− 1} and define x = q(e+ 1)− ceb
e. Consider the

path P whose first edge is {q(e), x}, and whose remaining edges are

{

{x+ j, x+ j + 1} : 0 ≤ j ≤ ceb
e − 1

}

.

The path P has 1 + ceb
e edges. The only base chord in the path is {q(e), x}. To

show that this edge is in fact a base chord, note that

x = q(e+ 1)− ceb
e = be+1 + 2(e+ 1)− ceb

e = (be + 2e) + 2 + (b− ce − 1)be

and b− ce − 1 ∈ {0, 1, . . . , b− 1} since ce ∈ {0, 1, . . . , b− 1}.

Note that in the graph Gb(q(e), e), q(e) and q(e + 1) are the first and last
vertices in this graph respectively. The graphs Gb(q(e), e) form the building
blocks of our construction and they will be put together using the graph union
operation. We slightly alter the definition of a graph union for our purposes due
to the fact that the graphs Gb(q(e), e) and Gb(q(e + 1), e + 1) share exactly one
vertex, namely q(e + 1). If G1, . . . , Gr is a collection of graphs, then the graph
G1 ∪G2 ∪ · · · ∪Gr is the graph with vertex set

V (G1) ∪ V (G2) ∪ · · · ∪ V (Gr)

and edge set
E(G1) ∪ E(G2) ∪ · · · ∪ E(Gr).

Definition 2. For integers k ≥ 2 and b ≥ 3, let Hb(k) be the graph

Hb(k) =
k−1
⋃

e=0

Gb(q(e), e).

For example, the graph H4(4) is the union of the four graphs G4(1, 0),
G4(6, 1), G4(20, 2) and G4(70, 3). The first three of these graphs are shown
in Figure 1. In the figure, all of the base chords are shown, but not all of the
vertices and outer edges of G4(6, 1) and G4(20, 2) are shown.
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Recall that q(x) = bx + 2x. For 0 ≤ e1 < e2 ≤ k − 1, the intersection

V (Gb(q(e1), e1)) ∩ V (Gb(q(e2), e2))

is empty unless e2 = e1 + 1 in which case the intersection is precisely q(e1 + 1).
This implies that the graphs

Gb(q(0), 0), Gb(q(1), 1), Gb(q(2), 2), . . . , Gb(q(k − 1), k − 1)

are edge disjoint. Therefore, Hb(k) has b
k+2k vertices and bk+2k−1+bk edges.

An edge ofHb(k) that is a base chord of some Gb(q(e), e) is called a chord edge. As
each Gb(q(e), e) has b base chords, the graph Hb(k) has bk chord edges. The edges
of Hb(k) that are not chord edges form a path from the vertex 1 to the vertex
q(k). Referring to Figure 1, the chord edges of H4(3) are {1, i} for i ∈ {3, 4, 5, 6},
{6, i} for i ∈ {8, 12, 16, 20}, and {20, i} for i ∈ {22, 38, 54, 70}. The remaining
edges of H4(4) form a path from the vertex 1 to the vertex q(3) = 43+2 · 3 = 70.

The following lemma is key to our construction. Before proving the lemma,
let us give a quick example using the graph H4(4). Suppose we want to find a
path of length 52 from 1 to 70 that uses exactly 3 chord edges. We first write

52− 3 = 49 = 3 · 42 + 1 · 41 + 1 · 40.

Now consider the path from 1 to 70 that uses the base chords {1, 5}, {6, 16},
{20, 22}. We can see that this path contains exactly 49 outer edges and 3 chord
edges, and so has length of 52. Notice that we can write these base chords the
following way: {1, 5} =

{

q(0), q(1)− 1 · 40
}

, {6, 16} =
{

q(1), q(2)− 1 · 41
}

, and
{

20, 22} = {q(2), q(3)− 3 · 42
}

. So then it is the coefficients of 4e that determine
which base chord to take.

Lemma 4. For each l ∈ {k− 1, k, . . . , k+ bk−1− 2}, there exists a path of length

l in the graph Hb(k) from the vertex 1 to the vertex q(k− 1) that contains exactly
k − 1 chord edges.

Proof. Let e ∈ {0, 1, . . . , k−2}. By Lemma 3, there is a path Pe of length 1+ceb
e

in the unique copy of Gb(q(e), e) in Hb(k) where the first vertex of Pe is q(e), the
last vertex is q(e + 1), and Pe contains exactly one chord edge. Therefore, the
union

P0 ∪ P1 ∪ · · · ∪ Pk−2

is a path of length (k − 1) +
∑k−2

e=0 ceb
e from the vertex 1 to the vertex q(k − 1)

that contains exactly k − 1 chord edges.
It is worth commenting that we are essentially using representations of inte-

gers in base b. Given l ∈ {k, k + 1, . . . , k + bk−1 − 2}, there are unique integers
c0, c1, . . . , ck−2 ∈ {0, 1, . . . , b− 1} such that

l − (k − 1) = c0b
0 + c1b

1 + · · ·+ ck−2b
k−2.
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In other words, we have written l − (k − 1) in base b. This last equation implies
that

l =
(

1 + c0b
0
)

+
(

1 + c1b
1
)

+ · · ·+
(

1 + ck−2b
k−2

)

and the use of Lemma 3 accounts for each term in this sum.

We will require another definition in order to continue the description of the
construction. This definition is dependent on the following claim.

Claim 5. Let b be a positive integer. If b =
⌈

n1/k
⌉

, then we have n > bk−1 + 2k
and (b− 1)k < n ≤ bk.

Proof. Since b =
⌈

n1/k
⌉

, we immediately have (b − 1)k < n ≤ bk. Using n >

(b− 1)k we confirm that n > bk−1 +2k by showing that the inequality (b− 1)k >

bk−1+2k holds. Now k ≥ 2 and b =
⌈

n1/k
⌉

≥
⌈

(

(k + 2)k
)1/k

⌉

= k+2, and when

b > k, it is known that (b − 1)k grows more quickly than bk−1, so it is sufficient
to observe that the inequality holds when k = 2 and b = k + 2.

Definition 3. Let k ≥ 2 and n ≥ (k+2)k be integers. Consider b = ⌈n1/k⌉. Add
the edges

{1, q(k − 1)} and {1, n}

to Hb(k). We then define Fk(n) to be this altered Hb(k) graph induced by the
vertices {1, 2, . . . , n}.

Note that when k = 2, the edge {1, q(k−1)} is already in Hb(k−1). So when
k = 2 we do not add this chord again. The edge {1, q(k − 1)} is called a chord

edge and all of the chord edges in Hb(k) are also called chord edges in Fk(n).

Observe that the number of chord edges of Fk(n) is at most k
⌈

n1/k
⌉

+1 and
that Fk(n) contains a cycle of length n whose edges are

{1, n} ∪ {{i, i+ 1} : 1 ≤ i ≤ n− 1}.

The number of total chord edges is what we are interested in counting to give
an upper bound for c(n, k). The next lemma will show that for all

l ∈ {k, k + 1, . . . , n− k},

we can find a cycle of length l in Fk(n) that contains exactly k chords. Therefore,
the graph Fk(n) contains almost all of the cycles that we need in order to complete
the proof of Theorem 2.

The vertex q(k − 1) = bk−1 + 2(k − 1), which is the unique vertex in both
Gb(q(k − 2), k − 2) and Gb(q(k − 1), k − 1), will play a special role so we let

m = q(k − 1) = bk−1 + 2(k − 1).
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Lemma 6. Let k ≥ 2 and n ≥ (k + 2)k. For each l ∈ {k, k + 1, . . . , n − k}, the
graph Fk(n) contains a cycle of length l that passes through exactly k chord edges.

Proof. We will prove Lemma 6 by establishing several claims. First we give a
quick outline of the proof.

1. Using Lemma 4, find paths from the vertex 1 to q(k − 1) that have exactly
k − 1 chord edges.

2. Find cycles whose last chord edge is {m, 1}. This will be Claim 7 and we
will use the paths from part 1 of this lemma. We will write L1 for the cycle
lengths we have found here.

3. Find paths from the vertex m to 1 that use exactly one chord edge in
Gb(q(k − 1), k − 1). This will be Claim 8.

4. Find the cycles by combining the paths from parts 1 and 3 of this lemma.
This will be Claim 9 and we write L2 for the cycle lengths we have found
here.

5. Show that parts 2 and 4 of this lemma combined cover all cycle lengths
l ∈ {k, k + 1, . . . , n− k}, i.e.,

{k, k + 1, . . . , n− k} ⊆ L1 ∪ L2.

This will be Claim 10.

By Definition 3, Fk(n) contains exactly one complete copy of each of the
graphs

Gb(q(0), 0), Gb(q(1), 1), Gb(q(2), 2), . . . , Gb(q(k − 2), k − 2).

By Lemma 4, for any c0, c1, . . . , ck−2 ∈ {0, 1, . . . , b−1}, there is a path, which
we will denote by P (c0, c1, . . . , ck−2), that has the following properties.

1. The first vertex is 1 and the last vertex is m.

2. The length of P (c0, c1, . . . , ck−2) is k − 1 +
∑k−2

e=0 ceb
e.

3. The edges of P (c0, c1, . . . , ck−2) are edges in the graphs

Gb(q(0), 0), Gb(q(1), 1), Gb(q(2), 2), . . . , Gb(q(k − 2), k − 2).

4. The path P (c0, c1, . . . , ck−2) contains exactly k − 1 chord edges of Fk(n).

We will now find paths in Fk(n) from the vertex m to the vertex 1 that use
edges from Gb(q(k − 1), k − 1), and either {n, 1} or {m, 1}. Each of these paths
will also contain exactly one chord edge.

Claim 7. For every l ∈ {k, k + 1, . . . , k + bk−1 − 1} the graph Fk(n) has a cycle

of length l that contains exactly k chord edges.



Pancyclicity When Each Cycle Contains k Chords 9

Proof. By definition of Fk(n), the edge {m, 1} is a chord edge. Therefore, given
c0, c1, . . . , ck−2 ∈ {0, 1, . . . , b− 1}, the union

P (c0, c1, . . . , ck−2) ∪ {m, 1}

is a cycle of length k +
∑k−2

e=0 ceb
e that contains exactly k chord edges. Claim 7

now follows from the fact that every integer in the set {0, 1, . . . , bk−1 − 1} can be
written in the form

∑k−2
e=0 ceb

e for some c0, c1, . . . , ck−2 ∈ {0, 1, . . . , b− 1}.

Let

L1 =

{

k +
k−2
∑

e=0

ceb
e : ce ∈ {0, 1, . . . , b− 1}

}

= {k, k + 1, . . . , k + bk−1 − 1}.

Since V (Gb(m, k − 1)) = {m,m+ 1,m+ 2, . . . , q(k)}, by Claim 5 the graph
Fk(n) contains a non-trivial induced subgraph of Gb(m, k − 1). Now we will
define an integer α that counts the number of base chords in Gb(m, k − 1) that
are chord edges in Fk(n). Let α be the unique integer in the set {0, 1, . . . , b− 2}
that satisfies

(3) m+ 2 + αbk−1 ≤ n < m+ 2 + (α+ 1)bk−1.

Such an α exists by Claim 5. The base chords in Gb(m, k− 1) that are chords in
Fk(n) are precisely those edges in the set

{

{

m,m+ 2 + jbk−1
}

: j ∈ {0, 1, . . . , α}
}

.

Claim 8. For any j ∈ {0, 1, . . . , α}, there is a path Q(j) in Fk(n) with the

following properties.

1. The first vertex is m and the last vertex is 1.

2. The length of Q(j) is n+ 2− (j + 1)bk−1 − 2k.

3. All of the edges of Q(j), with the exception of {n, 1}, are edges in the partial

copy of Gb(m, k − 1) in Fk(n).

4. The path Q(j) contains exactly one chord edge.

Proof. Let j ∈ {0, 1, . . . , α} and let Q(j) be the path

m,m+ 2 + jbk−1, m+ 2 + jbk−1 + 1, m+ 2 + jbk−1 + 2, . . . , n− 1, n, 1.

Clearly the first property holds for Q(j). The length of Q(j) is

1 + (n+ 1)−
(

m+ 2 + jbk−1
)

= n+ 2−
(

bk−1 + 2(k − 1) + 2 + jbk−1
)

.
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This shows that the second property holds. The third property follows from the
definition of the graphs Gb(i, e). Finally, the fourth property follows from the
fact that the first edge of Q(j), which is {m,m + 2 + jbk−1}, is the only chord
edge in Q(j).

Given c0, c1, . . . , ck−2 ∈ {0, 1, . . . , b− 1} and j ∈ {0, 1, . . . , α}, the union

P (c0, c1, . . . , ck−2) ∪Q(j)

is a cycle in Fk(n) of length

k − 1 +
k−2
∑

e=0

ceb
e + n+ 2− (j + 1)bk−1 − 2k

that contains exactly k chords. This expression can be rewritten as

n+ 1− k − (j + 1)bk−1 +
k−2
∑

e=0

ceb
e.

Let

L2 = {n+1− k− (j +1)bk−1 +
k−2
∑

e=0

ceb
e : j ∈ {0, 1, . . . , α}, ce ∈ {0, 1, . . . , b− 1}}.

Claim 9. If L2 is defined as above then

{

n− k + 1− (α+ 1)bk−1, n− k + 1− (α+ 1)bk−1 + 1,

n− k + 1− (α+ 1)bk−1 + 2, . . . , n− k
}

⊆ L2.

Proof. It is easy to check that the smallest integer in L2 is

n− k + 1− (α+ 1)bk−1

and the largest integer in L2 is

n− k + bk−1 − bk−1 = n− k.

We will now show that L2 contains every integer between n− k+1− (α+1)bk−1

and n− k.
As the ce’s range over {0, 1, . . . , b − 1}, the sum

∑k−2
e=0 ceb

e ranges over all
integers in the set {0, 1, . . . , bk−1 − 1} as shown in Lemma 4. Thus, for any fixed
j ∈ {0, 1, . . . , α}, the set

Ij =

{

n− k + 1− (j + 1)bk−1 +
k−2
∑

e=0

ceb
e : ce ∈ {0, 1, . . . , b− 1}

}
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is the interval
{

n− k + 1− (j + 1)bk−1, n− k + 1− (j + 1)bk−1 + 1, . . . , n− k + 1− jbk−1− 1
}

.

Note that for 0 < j ≤ α, the largest integer in Ij is n − k + 1 − jbk−1 − 1
and the smallest integer in Ij+1 is n − k + 1 − jbk−1. These two integers are
consecutive and so the union

I0 ∪ I1 ∪ · · · ∪ Iα

contains all integers from n−k+1− (α+1)bk−1 to n−k+1−0 ·bk−1−1 = n−k.
This completes the proof of Claim 9.

Claim 10. We have

{k, k + 1, . . . , n− k} ⊆ L1 ∪ L2.

Proof. To prove Claim 10, it is enough to show that

(4) n+ 1− k − (α+ 1)bk−1 − 1 ≤ k + bk−1 − 1

since the largest integer in L1 is k + bk−1 − 1, and the smallest integer in L2 is
n+ 1− k − (α+ 1)bk−1. The inequality (4) is equivalent to

(5) n+ 1 ≤ (α+ 2)bk−1 + 2k.

Recalling the definition of α given in (3), we have that n < (α + 2)bk−1 + 2k.
Now since n and (α+2)bk−1+2k are integers, this last inequality implies (5).

Combining Claim 10 together with the fact that for each l ∈ L1 ∪ L2, Fk(n)
contains a cycle of length l with exactly k chord edges completes the proof of
Lemma 6.

The final step is a simple argument that adds no more than k2 chord edges
to Fk(n) to account for the cycle lengths in the set {n− k + 1, n− k + 2, . . . , n}.

Lemma 11. We can add no more than k2 chord edges to Fk(n) in such a away

that there are cycles of length l ∈ {n− k+ 1, n− k+ 2, . . . , n} that contain these

chords.

Proof. Since c(n, k) is well defined, then given k chord edges and any Cn with
n ≥ (k + 2)k, it is easy to check that we can place these chord edges in a way
that creates a cycle of any length l ∈ {k, k+1, . . . , n} that contains these chords.
This can be verified by considering the complete graph Kn which is known to
be k-chord pancyclic for n ≥ k. Note that in the construction of Fk(n), we are
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always missing the last k cycles, namely l ∈ {n − k + 1, n − k + 2, . . . , n}, no
matter the size of n. This implies that we can add k chord edges to create a
cycle of length l for each l ∈ {n − k + 1, n − k + 2, . . . , n}. This would add at
most k2 chord edges to Fk(n), and would capture all missing cycles in the original
Fk(n) construction. Using a very specific and more complicated construction, it
is possible to reduce the amount of chord edges needed to capture these cycles
from k2 to k, however the strength of the result is not affected by the growth of
n in either case.

Thus, by Lemma 6 and Lemma 11 Fk(n) has no more than k
⌈

n1/k
⌉

+ k2

chords and contains all cycles of length l ∈ {k, k + 1, . . . , n}.

3. Concluding Remark

We believe that our upper bound is asymptotically best possible and that the
coefficient of n1/k in the bound c(n, k) ≤ k

⌈

n1/k
⌉

+ k2 is correct.

Affif Chaouche et al. ask if c(n, k) is monotone in n. We believe that c(n, k)
is monotone in n for all n > (k + 2)k. Establishing monotonicity for these types
of problems seems difficult. For example, Griffin [5] has conjectured that the
function m(n), defined in the introduction, satisfies m(n) ≤ m(n + 1) for all
n ≥ 3, but to our knowledge, this is still open.

Acknowledgements

I want to thank Craig Timmons and Mike Tait for their valuable comments,
input, and assistance during the writing of this paper. I also want to thank the
referees for their helpful comments which improved the quality of this paper.

References

[1] F. Affif Chaouche, C. Rutherford and R. Whitty, Pancyclicity when each cycle

must pass exactly k Hamilton cycle chords, Discuss. Math. Graph Theory 35 (2015)
533–539.
doi:10.7151/dmgt.1818

[2] J.A. Bondy, Pancyclic graphs I, J. Combin. Theory Ser. B 11 (1971) 80–84.
doi:10.1016/0095-8956(71)90016-5

[3] H.J. Broersma, A note on the minimum size of a vertex pancyclic graph, Discrete
Math. 164 (1997) 29–32.
doi:10.1016/S0012-365X(96)00040-4

[4] J.C. George, A. Khodkar and W.D. Wallis, Pancyclic and Bipancyclic Graphs, 1st
Ed. (Springer Briefs in Mathematics, Springer, 2016).

http://dx.doi.org/10.7151/dmgt.1818
http://dx.doi.org/10.1016/0095-8956(71)90016-5
http://dx.doi.org/10.1016/S0012-365X(96)00040-4


Pancyclicity When Each Cycle Contains k Chords 13

[5] S. Griffin, Minimal pancyclicity.
arXiv: 1312.0274v1 1 Dec 2013.

[6] D.B. West, Introduction to Graph Theory, 2nd Edition (Pearson Education, Inc.,
2001).

Received 26 September 2016
Revised 11 December 2017

Accepted 11 December 2017


