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Abstract

The testing problem on the first-order autoregressive parameter
in finite sample case is considered. The innovations are distributed
according to the exponential distribution. The aim of this paper is to
study how much the size of this test changes when, at some time k, an
innovation outlier contaminant occurs. We show that the test is rather
sensitive to these changes.
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1. Introduction

Consider the following autoregressive model

(1) Yt = ρYt−1 + εt t = . . . ,−1, 0, 1, . . .

where the εt’s are iid and distributed according to exponential distribution,
i.e., the density of εt is

fεt(x) = e−y, y > 0.

This model is useful for modelling a wide range of phenomena which do not
allow negative values (see, for example, Gaver and Levis, 1980).
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Many authors have studied this model. Bell and Smith (1986) studied
the estimating and testing problem on the parameter ρ. Turkman (1990)
proposed a bayesian estimator of ρ for the same model.

Now, suppose that we observe the model

(2) Xt = ρXt−1 + εt + δ δt,k 0 < k ≤ n n fixed

where

δt,k =





1 if t = k

0 if t 6= k

instead of (1). δ is a known magnitude of contamination of model (1) which
occurs at t = k.

This process, called innovation oultier (IO) model, has been proposed
for the first time by Fox (1972).
Assume that all what we observe is the segment of observations

(3) x0, x1, x2, . . . , xn n fixed

and X0 = Y0 is distributed according to an exponential distribution of pa-
rameter 1 − ρ. When δ = 0, the process (Xt) is mean stationary. This is
not true for δ 6= 0. We want to test

(4) H0 : ρ = ρ0 against H1 : ρ > ρ0.

Note that, in our problem, the value of the parameter ρ is known. It takes the
value ρ0 under H0 or another one ρ1 > ρ0 under H1. Then, in the original
model (δ = 0), Bell and Smith (1986, p. 2274) proposed the following
statistic

(5) T (ρ) = 2
n∑

t=1

(Yt − ρYt−1)

and showed that, under H0, T (ρ) is distributed as a chi-square (χ2) with 2n
degrees of freedom. Also, in their paper, the authors used the Kolmogorov-
Smirnov statistic to obtain confidence intervals for ρ. However, assessing
goodness of this statistic is rather difficult and then improving the criteria
is needed.

In this paper, we propose to study the effect of the given contami-
nant δ on the size of test (4) when the observations are provided by model
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(2) instead of model (1). Only the finite sample case is considered. A similar
problem has been studied in ANOVA and Student t test in iid case (see, for
example, Berkoun et al., 1996).

2. The size of the test

Given a sample X1, X2, . . . , Xn from model (2), the hypothesis H0 is tested
at a significance level α. If the statistic T (ρ) of Bell and Smith (1986) is
used, we can find an appropriate critical value c such that the hypothesis is
rejected if t(ρ) > c, i.e. PH0(T (ρ) > c) = α.

Our aim is to find how much the size of the test changes if we observe the
segment x0, x1, . . . , xn instead of y0, y1, . . . , yn. When we observe segment
(3) from model (2), the statistic T (ρ) is rewritten as follows:

(6) T ∗(ρ) = 2
n∑

t=1

(Xt − ρXt−1).

The relation between (Xt) and (Yt) is as follows

Xt = Yt ∀t < k,

Xk+j = Yk + ρjδ ∀j = 0, 1, . . . , n− k.

Assume that 0 < k < n. Then, when we observe (2) for a given δ, the
statistic T (ρ) becomes

(7) T ∗(ρ) = T (ρ) + 2δ.

Note that the statistic T ∗(ρ) is independent of the position k. Hence, the
test is not influenced by the position of the contaminant. Also, we know
that (Saporta, 1990, p. 474)

P (χ2
2n > x) = e−x/2

n−1∑

i=0

(x/2)i

i!
.

The size s(δ) of the test is equal to
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(8) PH0(T
∗(ρ)>c)=PH0 (T (ρ)>c−2δ)=Exp

{
c−2δ

2

}n−1∑

i=0

1
i!

(
c−2δ

2

)
i.

Since, T (ρ) is a χ2
2n when H0 is true (ρ = ρ0), the above formula has sense

if only if
c− 2δ > 0 =⇒ δ <

c

2
.

Hence, in the following, we assume that δ ∈] −∞, c/2[. Figure 1 presents
the density function of the statistic T ∗(ρ) for some values of δ.
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Figure 1. Density of T ∗(ρ) for δ = 0, 0.5, 1.5, 5 and for n = 3.

The study of the function s(δ) allows us to say that:

(i) The function s(δ) is non-decreasing.

(ii) The size vanishes when δ grows to −∞.

(iii) The maximal size is obtained when δ = c/2, i.e. αmax = s(c/2) = 1.

3. Numerical study

In what follows, we propose to make a numerical study of the effect of a
contaminant δ on the size of the test. To get an idea of how much this
contaminant increases the size of the test, some numerical results are given
in Table 1 for δ = 0.5, 1.5, 5.
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n δ = 0.5

α = 0.1 α = 0.05 α = 0.1

3 0.1406 0.0717 0.0148

10 0.1241 0.0634 0.0132

15 0.1206 0.0614 0.0127

20 0.1177 0.0600 0.0124

n δ = 1.5

α = 0.1 α = 0.05 α = 0.1

3 0.2656 0.1430 0.0318

10 0.1862 0.1000 0.0225

15 0.1705 0.0907 0.0203

20 0.1603 0.0852 0.0189

n δ = 5

α = 0.1 α = 0.05 α = 0.1

3 0.9957 0.8582 0.3387

10 0.5604 0.3733 0.1202

15 0.4539 0.2901 0.0887

20 0.3925 0.2453 0.0738

Table 1. Size of the test for δ = 0.5, 1.5, 5 and α = 0.1, 0.05, 0.01.

The variation of the size s(δ) when δ varies is given by the following figure
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Figure 2. Variation of the size of test with δ, α = 0.05.

The analysis of these results shows that, for a given n and α, there is a
probability that we accept H0 under model (1) and reject it under model
(2). For a given α, and a given n, the probability to accept H0 under (1)
and reject H0 under (2) is

p(c, δ) = PH0(T (ρ) < c and T ∗(ρ) > c)
= PH0(c− 2δ < T (ρ) < c) = P (χ2

2n > c− 2δ)− α.

Hence,

p(c, δ)=PH0(T (ρ)<c and T ∗(ρ)>c)=Exp

{
c− 2δ

2

}n−1∑

i=0

1
i!

(
c− 2δ

2

)
i−α.

In what follows, we present some exact values of p(c, δ).

α = 0.1 α = 0.05

n δ = 0.5 δ = 5 δ = 0.5 δ = 5

3 0.040 0.895 0.021 0.808

20 0.017 0.292 0.010 0.195

Table 2. Exact values of PH0(T (ρ) < c and T ∗(ρ) > c).
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For example, we remark that, if n = 3 and δ = 5, the probability that the
acceptation of H0 will change to its rejection is very high (' 0.8).

4. Application

Simulated values of the probability p(c, δ) according to the situation given
by Table 2 are given in the following:

α = 0.1 α = 0.05

n δ = 0.5 δ = 5 δ = 0.5 δ = 5

3 0.040 0.895 0.020 0.811

20 0.018 0.294 0.009 0.191

Table 3. Simulated values of p(c, δ), 10000 repetitions.

First, note that these simulation results are very similar to exact values of
p(c, δ) given in Table 2 which should be read as follows: for δ = 5 and
n = 20, if we repeat 10000 times a segment of process (2), the decision of
acceptation of H0 will change to rejection of the same hypothesis in 19.1 %
of repetitions. We can clearly see this situation in the following example:

t 0 1 2 3 4 5 6 7 8 9 10

yt 1.042 0.827 0.903 1.754 0.838 0.359 0.604 0.899 6.609 4.725 2.493

xt 1.042 0.827 0.903 1.754 0.838 5.359 2.604 1.699 6.929 4.853 2.545

Table 4. c = 31.41, t(ρ) = 25.174, t∗(ρ) = 35.174.

The first line of the table is a segment of 10 observations of the process
(Yt) (without contamination). Here, the constant c is equal to 31.41 and
t(ρ) = 25.174. Then, the hypothesis H0 is accepted.

The second line contains observations obtained when the same segment
is contaminated at t = 5 with δ = 5. The value of t∗(ρ) = 35.174. This
leads to rejection of H0.
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5. Simulation power study

In what follows, we propose to study the effect of an innovation outlier on
the power of the test for a given δ and a given significance level α. The
basic method is simulation procedure. To illustrate numerically this effect,
Table 5 presents the values of the power of the test for n = 3, 20, 50 and for
some values of δ. The true value of ρ used in this example is 0.4 and the
significance level is α = 0.05.

ρ0

n δ 0.0 0.2 0.4 0.6 0.8

0.00 0.251 0.130 0.050 0.012 0.003

2.00 0.703 0.447 0.198 0.056 0.010

3 4.00 0.999 0.944 0.603 0.201 0.036

6.00 1.000 1.000 0.997 0.580 0.112

0.00 0.774 0.395 0.050 0.000 0.000

2.00 0.900 0.574 0.103 0.000 0.000

20 4.00 0.971 0.755 0.192 0.001 0.000

6.00 0.995 0.890 0.316 0.002 0.000

0.00 0.973 0.679 0.050 0.000 0.000

2.00 0.988 0.783 0.084 0.000 0.000

50 4.00 0.996 0.859 0.129 0.000 0.000

6.00 0.998 0.919 0.191 0.000 0.000

Table 5. Variation of the power of the test, α = 0.05, 10000 runs.

We can remark that, for all values of n, - when ρ0 = 0.4, we obatin exactly
the size of the testand - when ρ0 = 0.4 and δ = 0, we find ourselves in
the original model. Then, we obtain exactly the significance level 0.05 since
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ρ = 0.4 is the true value used in these simulations. Also, for a given ρ0,
when δ grows, the power increases. If ρ0 is close to zero, the power can
reach quickly the maximal value one. But, if ρ0 is close to one, the power is
zero except for very small samples. Then, one can say that, in the presence
of a single innovation outlier, the size and the power of the test change.

6. Conclusions

The contaminant δ can increase the size of the test up to 1 (when δ ap-
proaches cδ/2) and can decrease this size down to 0 (when δ tends to −∞).
Also, the power of the test is influenced by this contaminant. Then, one
can affirm that the statistic used in this test is sensitive to changes of the
magnitude of innovations. This makes the criterion test rather useless and
a robust statistic is needed. For further investigations, one can generalize
the problem by considering innovations distributed according to exponential
distribution with unknown parameter θ which should be estimated. In this
case, it would be interesting to make adaptive procedures for estimation of
the parameters and then testing the hypothesis H0 : ρ = ρ0. On the other
hand, if a detection procedure allows us to decide that there is a contam-
inant at a position t0, the problem is to estimate the magnitude δ of this
contaminant.
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