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Abstract

In this paper, first we consider parametric control systems driven by
nonlinear evolution equations defined on an evolution triple of spaces.
The parametres are time-varying probability measures (Young mea-
sures) defined on a compact metric space. The appropriate optimiza-
tion problem is a minimax control problem, in which the system analyst
minimizes the maximum cost (risk). Under general hypotheses on the
data we establish the existence of optimal controls.

Then we pass to nonparametric systems, which are governed by
nonlinear evolution equations with nonmonotone operators. We prove
two existence results for such evolution inclusions, which are of inde-
pendent interest and extend significantly the results existing in the
literature. Then we solve time-optimal and Meyer-type optimization
problems. In Section 5, we derive necessary conditions for saddle point
optimality in the minimax control problem. We conclude the paper
with three examples of distributed parameter control systems.
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1. Introduction

In this paper, we consider optimal control systems monitored by nonlinear
evolution equations. First, we examine uncertain control systems. Uncer-
tainty can arise from errors in the measurement of the parameters of the
system or from their random fluctuation. In this work, we model uncer-
tainty by time-dependent measures on a compact measure space (transition
measures). The resulting system has many solutions and the natural opti-
mization problem to consider is a minimax control problem. Namely, the
system analyst tries to minimize the maximum risk (cost). So we are in
a theoretic situation similar to differential game with competing interests,
where the second player is nature. We also consider an optimal control
problem with no uncertainty involved and with no monotonicity conditions
on the nonlinear operator of the evolution equation. We prove the existence
and compactness result for the solution set of a class of related evolution
inclusions. This result is actually of independent interest and is then used
to solve optimal control problems. Then we derive necessary conditions for
saddle point optimality of the initial minimax problem. We conclude the
paper with three examples of distributed parameter, nonlinear parabolic
optimal control problems.

Parametric optimal control problems were studied by Ahmed-Xiang [1],
Aizicovici-Papageorgiou [2] and Papageorgiou [25], [27]. In Papageorgiou
[27] the system is driven by a time dependent subdifferential evolution equa-
tion, while Ahmed-Xiang [1], Aizicovici-Papageorgiou [2] and Papageorgiou
[25] work with evolution equations defined on an evolution triple. In Ahmed-
Xiang the parameters are measures which are not time-dependent, while in
Aizicovici-Papageorgiou and Papageorgiou the parameter belongs to a com-
plete metric space and appears also in the nonlinear operator of the evolu-
tion equation, but this then forces stronger hypotheses on the data which
are avoided here. In addition, we obtain here necessary conditions for a
saddle point solution to the minimax problem (see Section 5). The exis-
tence results that we have for the nonparemetric optimal control problems
(see Section 4), extend in several ways those of Cesari [8], Cesari-Hou [9],
Hou [17], [18] and Papageorgiou [24]. We should also mention the related re-
cent work of Papageorgiou [26], where a theory for optimal control problems
driven by time-varying subdifferential evolution equations is developed.
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2. Preliminaries

In our analysis, we will need the theory of multifunctions and the theory of
evolution triples. For the reader’s convenience of in this section, we recall
the basic definitions and results that we will need in the sequel. More details
can be found in the books of Hu-Papageorgiou [19] and Zeidler [37].

Let (Ω, Σ) be a measurable space and Y a separable Banach space.
Throughout this paper we will be using the following notations:

Pf(c)(X) = {A ⊆ X : A is nonempty, closed (and convex)}

and

P(w)k(c)(X) = {A ⊆ X : A is nonempty, (weakly) compact (and convex)} .

A multifunction F : Ω → 2Y \ {∅} is said to be “graph measurable”, if

GrF = {(ω, y) ∈ Ω× Y : y ∈ F (ω)} ∈ Σ× B(Y )

with B(Y ) being the Borel σ-field of Y . A multifunction G : Ω → Pf (Y ) is
said to be measurable, if for all y ∈ Y the distance function

ω → d(y, G(ω)) = inf[|| y − g ||: g ∈ G(ω)]

is measurable. For Pf (Y ) -valued multifunctions measurability implies graph
measurability and if there is a σ-finite measure µ on (Ω,Σ) with respect to
which Σ is complete, then the two notions are equivalent.

Let (Ω,Σ, µ) be a σ-finite measure space and F : Ω → 2Y \ {∅} a
multifunction. For 1 ≤ p ≤ ∞, let Sp

F be the set of all Lp(Ω, X)-selectors of
F (·). The set Sp

F is nonempty if and only if inf {|| z ||: z ∈ F (ω)} ≤ h(ω) µ-
a.e. with h ∈ Lp(Ω).

Let V, Z be Hausdorff topological spaces. A multifunction F : V →
2Z\{∅} is said to be lower semicontinuous (lsc) (upper semicontinuous (usc)),
if for all C ⊆ Z closed the set F+(C) = {v ∈ V : F (v) ⊆ V } (resp. F−(C) =
{v ∈ V : F (v) ∩ C 6= ∅}) is closed in Y.

Next let H be a separable Hilbert space and let X be a dense subspace
of H carrying the structure of a separable, reflexive Banach space which
is embedded continuously in H. Identifying H with its dual (pivot space),
we have that X ⊆ H ⊆ X∗ with all embeddings being continuous and
dense. Such a triple of spaces is known in the literature as “evolution triple”
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or “Gelfand triple”. We will assume that the embedding of X into H is
compact (which implies that H is embedded compactly into X∗). By | · |
(resp.|| · ||, || · ||∗) we denote the norm of H (resp. of X, X∗). Also by (·, ·)
we denote the inner product of H and by < ·, · > the duality brackets for the
pair (X∗, X). The two are compatible in the sense that < ·, · >|H×X= (·, ·).
Let 1 < p, q < ∞, 1

p + 1
q = 1 and T = [a, b]. We define

Wpq(T ) = {x ∈ Lp(T, X) : ẋ ∈ Lq(T, X∗)} .

The time-derivative involved in this definition is understood in the sense of
vector-valued distributions. Furhished with the norm

|| x ||Wpq(T )=
{
|| x ||2p + || ẋ ||2q

} 1
2

the space Wpq(T ) becomes a separable reflexive Banach space. It is well-
known that Wpq(T ) is continuously embedded in C(T, H) (i.e. every element
x ∈ Wpq(T ) ⊆ Lp(T, X) has a unique representative in C(T, H)). Moreover,
since we have assumed that X is embedded compactly in H, then we have
that Wpq(T ) is embedded compactly in Lp(T, H) (see Zeidler [37], p. 450).
For further details and additional results in this area the reader can also
refer to Simon [35].

Let Y be a reflexive Banach space, L : D(L) ⊆ Y → Y ∗ a linear
densely defined maximal monotone operator and let K : Y → 2Y ∗ \ {∅} be
a multivalued operator. We say that K(·) is “coercive” if

inf[< v, y >: v ∈ K(y)]
|| y || → +∞ as || y ||→ ∞.

We say that K is “L-generalized pseudomonotone”, if
(i) for all y ∈ Y, K(y) ∈ Pwkc(Y ∗);
(ii) K(·) is usc from every finite dimensional subspace of D(L) into Y ∗

w

(here by Y ∗
w we denote the space Y ∗ equipped with the weak topology);

(iii) if {yn}n≥1 ⊆ D(L) with yn → y in Y, y ∈ D(L), L(yn) → L(y) in Y ∗,
y∗ ∈ K(yn), n ≥ 1, y∗n → y∗ in Y ∗ and lim(y∗n, yn) ≤ (y∗, y), then
y∗ ∈ K(y) and (y∗n, yn) → (y∗, y) as n →∞.

Let T = [a, b] and V a compact metric space. Let M1
+(V ) be the set of all

probability measures on (V,B(V )) (as before B(V ) denotes the Borel σ-field
of V ). We endow M1

+(V ) with the weak topology. This is the initial topology
with respect to which the functionals λ → (f, λ) =

∫
V f(v)λ(dv), f ∈ C(V ),
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are continuous. We remark that M1
+(V ) topologized this way is actually a

compact metrizable space (see Dellacherie-Meyer [10], p. 73 for a general
version of this result). A “transition probability” or “Young measure” from
T into V is defined to be a function λ : T → M1

+(V ) such that for every
C ∈ B(V ), t → λ(t)(C) is measurable. In fact, this definition is equiva-
lent to saying that the map t → λ(t)(·) is measurable from T into M1

+(V )
when the latter is endowed with the weak topology. We denote the set of
all transition probabilities from T into V by R(T, V ). The weak topology
of M1

+(V ) has an obvious analog on R(T, V ). Let Car(T × V ) denote the
space of L1-Caratheodory integrands on T × V ; i.e., the set of all functions
g : T ×V → R such that t → g(t, v) is measurable, v → g(t, v) is continuous
and for some ψ ∈ L1(T ), | g(t, v) |≤ ψ(t) a.e. for all v ∈ V . Then the “weak
topology” on R(T, V ) is defined as the initial topology on R(T, V ) with
respect to which the functionals λ → Ig(λ) =

∫
T

∫
V g(t, v)λ(t)(dv)dt, g ∈

Car(T × V ), are continuous. If instead of g ∈ Car(T × V ), we con-
sider a nonegative normal integrand g(t, v) (i.e. g(·, ·) is jointly measur-
able, v → g(t, v) is lower semicontinuous and g(t, v) ≥ 0), then λ → Ig(λ)
is lower semicontinuous. Let M(V ) be the space of finite Borel measures
on V. We know that C(V )∗ = M(V ) (Riesz representation theorem). By
L∞(T, M(V )w∗) we denote the space of all M(V )-valued functions λ(·) such
that for every f ∈ C(V ), t → (λ(t), f) =

∫
V f(v)λ(t)(dv) is measurable

and | (λ(t), f) |≤ c || f ||C(V ) a.e. on T (the exceptional null set depend-
ing on f). The norm of λ(·) is the infimum of all these c’s. We know (see
Ionescu-Tulcea [21], p. 25) that L1(T,C(V ))∗ = L∞(T, M(V )w∗). Identi-
fying Car(T × V ) with L1(T, C(V )) and viewing R(T, V ) as a subset of
L∞(T, M(V )w∗), we see that the weak topology on R(T, V ) is the relative
w(L∞(T, M(V )w∗), L1(T,C(V ))) – topology.

3. Existence results for parametric problems

Let T = [a, b], and let (X, H, X∗) be an evolution triple of spaces with all
embeddings being compact, Y is a separable reflexive Banach space and V a
compact metric space. In this section, we deal with the following parametric
control system:





ẋ(t) + A(t, x(t)) =
∫

V
f(t, x(t), v)λ(t)(dv) + B(t)u(t) a.e. on T

x(0) = x0 ∈ H, u ∈ Sq
U , λ ∈ SΣ



(1)
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Here
Sq

U = {u ∈ Lq(T, Y ) : u(t) ∈ U(t) a.e. on T}
and

SΣ = {λ ∈ R(T, V ) : λ(t) ∈ Σ(t) a.e. on T} .

The space Y models the control space and U : T → 2Y \ {∅} is the control
constraint multifunction. The space V models the space of parameters and
Σ : T → 2V \ {∅} is the parameter distribution constraint multifunction (to
be defined precisely in the sequel).

Given u ∈ Sq
U and λ ∈ SΣ, let x(u, λ)(·) ∈ Wpq(T ) be a solution to (1).

Our hypotheses on the data will guarantee that x(u, λ)(·) ∈ Wpq(T ) exists
and is unique. Let

L : T ×H × Y → R̄ = R ∪ {+∞}

be an integrand representing the instantaneous cost (risk). We define

J(u, λ) =
∫ b

0
L(t, x(u, λ)(t), u(t))dt.

This is the total intertemporal cost when u and λ are in effect. Then our
problem is the following minimax problem:

β = inf
u

sup
λ

[J(u, λ) : u ∈ Sq
U , λ ∈ SΣ](2)

i.e the system analyst first, for a fixed control, computes the maximum cost
and then he (she) minimizes these extremal costs over all admissible controls.
We are looking for a control u∗ ∈ Sq

U such that

β = sup[J(u∗, λ) : λ ∈ SΣ].

We call the control u∗ ∈ Sq
U “optimal”.

Now we can introduce our hypotheses on the data of problem (1):

H(A) : A : T ×X → X∗ is an operator such that

(i) for all x ∈ X, t → A(t, x) is measurable;
(ii) for every t ∈ T, x → A(t, x) is demicontinuous and monotone;
(iii) for almost all t ∈ T and all x ∈ X, || A(t, x) ||∗≤ a1(t) + c1 || x ||p−1

with a1 ∈ Lq(T ), c1 > 0, 2 ≤ p < ∞, 1
p + 1

q = 1;
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(iv) for almost all t ∈ T and all x ∈ X, < A(t, x), x >≥ c || x ||p −a(t) with
c > 0, a ∈ L1(T )+.

H(f) : f : T ×H × V → H is a function such that

(i) for every (x, v) ∈ H × V, t → f(t, x, v) is measurable;
(ii) for almost all t ∈ T , all x, y ∈ H and all v ∈ V we have

|f(t, x, v)− f(t, y, v)| ≤ k(t)|x− y|

with k ∈ L1(T );
(iii) for all t ∈ T and all x ∈ H, v → f(t, x, v) is continuous;
(iv) for almost all t ∈ T , all x ∈ H and all v ∈ V ,

|f(t, x, v)| ≤ a2(t) + c2(x)2/q with a2 ∈ Lq(T ), c2 > 0.

H(B) : B ∈ L∞(T,L(Y, H)) (by L(Y,H) we denote the Banach space of
bounded linear operators from Y into H).

H(U) : U : T → Pfc(Y ) is a measurable multifunction such that

t → |U(t)| = sup {||u|| : u ∈ U(t)} ∈ Lq(T )+;

H(Σ) : Γ : T → Pf (V ) is a measurable multifunction
and Σ(t) =

{
λ ∈ M1

+(V ) : λ(Γ(t)) = 1
}
.

H(L) : L : T ×H × Y → R̄ = R ∪ {+∞} is an integrand such that
(i) (t, x, u) → L(t, x, u) is measurable;
(ii) for all t ∈ T, (x, u) → L(t, x, u) is lower semicontinuous;
(iii) for all t ∈ T and all x ∈ H, u → L(t, x, u) is convex;
(iv) for almost all tεT and all x ∈ H, u ∈ Y we have

ϕ(t)− c3(|x|+ ||u||) ≤ L(t, x, u)

with ϕ ∈ L1(T ), c3 > 0.

Let G1 : T ×H → 2H \ {∅} be the multifunction defined by

G1(t, x) =
∫

V
f(t, x, v)Σ(t)(dv) =

{∫

V
f(t, x, v)λ(dv) : λ ∈ Σ(t)

}
.
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Proposition 1. If hypotheses H(f) and H(Σ) hold, then G1 : T × H →
Pfc(H), for all x ∈ H, t → G1(t, x) is Lebesgue measurable and for almost
all t ∈ T, GrG1(t, ·) is sequentially closed in H × Hw (by Hw denote the
Hilbert space H furnished with the weak topology).

Proof. First we show that G1(·, ·) has values in Pfc(H). Convexity is
clear. So we only need to show that G1(t, x) is closed. To this end, let
yn ∈ G1(t, x), n ≥ 1, and assume that yn → y in H as n →∞. By definition
we have

yn =
∫

V
f(t, x(t), v)λn(dv), λn ∈ Σ(t), n ≥ 1.

Recall that M1
+(V ) furnished with the weak topology is a compact metrizable

space (see Section 2). So by passing to a subsequence if necessary, we may
assume that λn → λ in M1

+(V ) as n →∞.
From the “Portmanteau Theorem” (see Parthasarathy [34], Theorem

6.1, p. 40), we have that λ(Γ(t)) = 1 and so λ ∈ Σ(t). Moreover,
from the definition of the weak topology, we have

∫
V f(t, x, v)λn(dv) →∫

V f(t, x, v)λ(dv) in H as n →∞ (cf. hypothesis H(f) (iii)). Thus

y =
∫

V
f(t, x, v)λ(dv)

with λ ∈ Σ(t) and so y ∈ G1(t, x). Therefore G1(t, x) ∈ Pfc(H).
Next note that

GrG1(t, ·) = {(t, y) ∈ T ×H : y ∈ G1(t, x)}
= {(t, y) ∈ T ×H : (h, y) ≤ σ(h,G1(t, x)) for all h ∈ H}

Here σ(·, G1(t, x)) is the support function of the set G1(t, x); i.e.
σ(h,G1(t, x)) = sup[(h, y) : y ∈ G1(t, x)]. We have:

σ(h,G1(t, x)) = sup
[
(h,

∫

V
f(t, x, v)λ(dv) : λ ∈ Σ(t)

]

= sup
[∫

V
(h, f(t, x, v)λ(dv) : λ ∈ Σ(t)

]
.

We will show that GrΣ ∈ L(T )×B(M1
+(V )), with L(T ) being the Lebesque

σ-field of T. Indeed let g ∈ C(V ). Using the fact that discrete measures are
dense in M1

+(V ) for the weak topology (see Parthasarathy [34], Theorem
6.3, p. 44), we have

σ(g, Σ(t)) = sup[(λ, g) : λ ∈ Σ(t)] = sup[g(v) : v ∈ Γ(t)].
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Let γn : T → V, n ≥ 1, be Lebesgue measurable functions such that
Γ(t) = {γn(t)}n≥1 for all t ∈ T (see Hu-Papageorgiou [19], Theorem 2.5,
p. 156). So we have

σ(g, Σ(t)) = sup[g(v) : v ∈ Γ(t)] = sup
n≥1

g(γn(t))

⇒ t → σ(g,Σ(t)) is Lebesgue measurable.

Now let {gm}m≥1 be dense in the Banach space C(V ). Since σ(·,Σ(t)) is
continuous, we have

GrΣ = ∩m≥1
{
(t, λ) ∈ T ×M1

+(V ) : (λ, gm) ≤ σ(gm, Σ(t))
}

∈ L(T )× B(M1
+(V )).

Using this fact, we see that for every θ ∈ IR

Eθ = {t ∈ T : σ(h, G1(t, x)) > θ}

= projT

{
(t, λ) ∈ GrΣ :

∫

V
(h, f(t, x, v)λ(dv) > θ

}
.

But by the Yankov-von Neumann-Aumann projection theorem
(see Hu-Papageorgiou [19], Theorem 1.33, p. 149), we have that
projT {(t, λ) ∈ GrΣ :

∫
V (h, f(t, x, v)λ(dv) > θ} ∈ L(T ). Since θ ∈ IR was

arbitary we deduce that for every h, x ∈ H, t → σ(h,G1(t, x)) is Lebesgue
measurable. Hence if {hm}m≥1 is dense in H, we have

GrG1(·, x)

= ∩m≥1 {(t, y) ∈ T ×H : (hm, y) ≤ σ(hm, G1(t, x))} ∈ L(T )× B(H)

⇒ t → G1(t, x) is a Lebesgue measurable multifunction (see Section 2).

Next we will show that for every t ∈ T, G1(t, ·) has a graph which is se-
quentially closed in H ×Hw. To this end, let (xn, yn) ∈ GrG1(t, ·), n ≥ 1,
and assume that xn → x, yn → y in H as n →∞. We have

yn =
∫

V
f(t, xn, v)λn(dv), λn ∈ Σ(t), n ≥ 1.

By passing to a subsequence if necessary, we may assume that λn
w→ λ in

M1
+(V ) as n →∞, λ ∈ Σ(t). Note that by virtue of hypothesis H(f) (ii), for

almost all t ∈ T , we have f(t, xn, ·) c→ f(t, x, ·) as n →∞, where c→ denotes
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continuous convergence. So for almost all t ∈ T , f(t, xn, ·) → f(t, x, ·) in
C(V ) as n → ∞ (see Dugundji [12], Remark 7.5, p. 268) and by Rao’s
theorem (see Parthasarathy [34], Theorem 6.8, p. 51) we have

yn =
∫

V
f(t, xn, v)λv(dv) → y

=
∫

V
f(t, x, v)λ(dv) in H as n →∞, λ ∈ Σ(t)

⇒ y ∈ G1(t, x).

This proves that the graph of G1(t, ·) is sequentially closed in H ×Hw.

Let F : T×H → Pfc(H) be the multifunction defined by F (t, x) = G1(t, x)+
G2(t) with G2(t) = B(t)U(t). From Proposition 1 we know that for all
x ∈ H, t → F (t, x) is Lebesgue measurable, for almost all t ∈ T, GrF (t, ·)
is sequentially closed in H ×Hw and

|F (t, x)| = sup[|y| : y ∈ F (t, x)] ≤ â2(t) + ĉ2|x|2/q

a.e. on T for all x ∈ H with â2 ∈ Lq(T ), c2 > 0. We consider the following
evolution inclusion:

{
ẋ(t) + A(t, x(t)) ∈ F (t, x(t)) a.e on T

x(0) = x0

}
(3)

Let R ⊆ Wpq(T ) be the solution set of (3). Hypotheses H(A) and the prop-
erties of the multifunction F (·, ·), allow us to use the results of Papageorgiou
[30] (see also Papageorgiou-Shahzad [32], [33]) and have that R is weakly
compact in Wpq(T ) and compact in Lp(T,H).

Now consider the map (u, λ) → x(u, λ), which to a given control-
parameter pair (u, λ) ∈ Lq(T, Y ) × R(T, V ) assigns the unique solution
x(u, λ)(·) ∈ Wpq of (1) (see Aizicovici-Papageorgiou [2]). On R(T, V ) we
consider the weak topology defined in Section 2.

Proposition 2. If hypotheses H(A),H(f),H(B),H(Σ) hold, then (u, λ) →
x(u, λ) is sequentially continuous from Lq(T, Y )w × R(T, V ) into Lp(T,H)
(by Lq(T, Y )w we denote the Lebesgue-Bochner space Lq(T, Y ) endowed with
the weak topology).

Proof. We need to show that if un → u in Lq(T, Y ) and λn → λ in
R(T, V ) as n → ∞, then x(un, λn) → x(u, λ) in Lp(T, H) as n → ∞. In
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what follows, we set xn = x(un, λn), n ≥ 1 and x = x(u, λ). Note that
{xn}n≥1 ⊆ R ⊆ Wpq(T ) ⊆ Lp(T, H). So by passing to a subsequence if
necessary, we may assume that xn

w→ y in Wpq(T ), xn → y in Lp(T, H) and
xn(t) → x(t) in H for all t ∈ T \N, |N | = 0. We have:





ẋn(t) + A(t, x(t)) =
∫

V
f(t, xn(t), v)λn(t)(dv) + B(t)un(t) a.e on T

xn(0) = x0, λn ∈ SΣ.





(4)
Denote by ((·, ·)) the duality brackets for the pair (Lp(T,X), Lq(T, X∗)) and
by (·, ·)pq the duality brackets for the pair (Lp(T, H), Lq(T,H)) (recall that
if Z is a reflexive Banach space or more generally if Z is a Banach space and
Z∗ has the Radon-Nikodym property with respect to the Lebesgue measure
on T , then Lp(T, Z)∗ = Lq(T, Z∗); see Ionescu-Tulcea [21], Theorem 10,
p. 99 and Diestel-Uhl [11], Theorem 1, p. 98). Also let

Â : Lp(T, X) → Lq(T,X∗), f̂ : Lp(T, H)×R(T, V ) → Lq(T,H)

and B̂ : Lq(T, Y ) → Lq(T,H)

be defined by

Â(w)(·) = A(·, w(·)), f̂(w, λ)(·)

=
∫

V
f(·, w(·), v)λ(·)(dv) and B̂(u)(·) = B(·)u(·)

Set f̂n(w)(·) = f̂(w, λn)(·) for all w ∈ Lp(T, H), n ≥ 1. We have

((ẋn, xn − y)) + ((Â(xn), xn − y)) = (f̂(xn), xn − y)pq + (B̂un, xn − y)pq.

We know that xn
w→ y in Wpq(T ), xn → y in Lp(T,H) and xn(t) → y(t) in

H for all t ∈ T \N, |N | = 0. The sequence

{< ẋn(·), xn(·)− x(·) >}n≥1 ⊆ L1(T )

is uniformly integrable. So given ε > 0, we can find s, t ∈ T \N, s ≤ t, such
that
∫ b

t
| < ẋn(τ), xn(τ)−x(τ) > |dτ ≤ ε

2
and

∫ s

0
| < ẋn(τ), xn(τ)−x(τ) > |dτ ≤ ε

2
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In what follows by ((·, ·))st we denote the duality brackets for the pair
(Lp([s, t], X), Lq([s, t], X∗). Using the integration by parts formula for func-
tions in Wpq(T ) (see Zeidler [37], Proposition 23.23, p. 423) we have

((ẋn, xn − x))st

=
1
2
|xn(t)− x(t)|2 − 1

2
|xn(s)− x(s)|2 + ((ẋ, xn − x))st → 0 as n →∞

So we have

((ẋn, xn − x)) =
∫ b

0
< ẋn(τ), xn(τ)− x(τ) > dτ

=
∫ s

0
< ẋn(τ), xn(τ)− x(τ) > dτ

+
∫ b

t
< ẋn(τ), xn(τ)− x(τ) > dτ + ((ẋ, xn − x))st

≥ −ε + ((ẋ, xn − x))st

⇒ lim((ẋn, xn − x)) ≥ −ε.

(5)

Similarly we obtain that

lim((ẋn, xn − x)) ≤ ε.(6)

From (5) and (6) we infer that ((ẋn, xn − x)) → 0 as n →∞. Also we have
∫ b

0

(∫

V
f(t, xn(t), v)λn(t)(dv), xn(t)− y(t)

)
dt → 0

and (B̂un, xn − y)pq → 0 as n →∞.
Therefore, finally we have lim((Â(xn), xn − y)) = 0. But Â is clearly

monotone demicontinuous, hence maximal monotone. In particular then Â
is generalized pseudomonotone (see Hu-Papageorgiou [19]) and so Â(xn) w→
Â(y) in Lq(T, X∗) and ((Â(xn), xn)) → ((Â(y), y)) as n → ∞. Recall that
λn → λ in R(T, V ) is equivalent to saying that λn

w∗→ λ in L∞(T,M(V )w∗)
(see Section 2). For every h ∈ G we have gn(h)(t, ·) = (h, f(t, xn(t), ·) ∈
C(V ), n ≥ 1, and g(h)(t, ·) = (h, f(t, y(t), ·)) ∈ C(V ). Evidently for almost
all t ∈ T we have gn(h)(t, ·) → g(h)(t, ·) in C(V) as n →∞ (cf. hypotheses
H(f) (ii) and (iii)) and so gn(h) → g(h) in L1(T,C(V )) as n → ∞ (dom-
inated convergence theorem). Denote by (·, ·)0 the duality brackets for the
pair (L1(T,C(V )), L∞(T, M(V )w∗)). For every A ∈ L(T ) we have

(χAgn(h), λn)0 → (χAg(h), λ)0 as n →∞.
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So for every (h,A) ∈ H × L(T ), if f̂n(t) =
∫
V f(t, xn(t), v)λn(t)(dv), n ≥ 1,

f̂(t) =
∫
V f(t, y(t), v)λ(t)(dv), f̂n, f̂ ∈ Lq(T, H), n ≥ 1, we have

(χAh, f̂n)pq → (χAh, f̂)pq as n →∞
⇒ (s, f̂n)pq → (s, f̂)pq as n →∞ for all simple functions s ∈ Lp(T, H).

But simple functions are dense in Lp(T,H). So we have

(g, f̂n) → (g, f̂) as n →∞ for all g ∈ Lp(T,H),

⇒ f̂n
w→ f̂ in Lq(T, H) as n →∞.

Thus by passing to the limit as n →∞ in (4) we obtain

ẏ + Â(y) = f̂ + B̂u

⇒ ẏ(t) + A(t, y(t)) =
∫

V
f(t, y(t), v)λ(t)(dv) + B(t)u(t) a.e. on T

y(0) = x0, λ ∈ SΣ

⇒ y = x(u, λ) = x.

This proves the desired continuity of (u, λ) → x(u, λ).

Let η(u) = sup[J(u, λ) : λ ∈ SΣ].

Proposition 3. If hypotheses H(A),H(f),H(B),H(U),H(Σ) and H(L)
hold, then η : Lq(T, Y )w → IR = IR ∪ {+∞} is sequentially lower semi-
continuous.

Proof. We need to show that for every θ ∈ IR the lower level set

∆θ = {u ∈ Lq(T, Y ) : η(u) ≤ θ}
is sequentially closed in Lq(T, Y )w. So let un ∈ ∆θ, n ≥ 1, and assume
that un → u in Lq(T, Y ) as n → ∞. Given ε > 0 we can find λ ∈ SΣ

such that η(u) − ε ≤ J(u, λ). By virtue of proposition 2, we have that
x(un, λ) → x(u, λ) in Lp(T, H) as n → ∞. So invoking Theorem 2.1 of
Balder [5], we obtain

J(u, λ) ≤ limJ(un, λ) ≤ limη(un) ≤ θ

⇒ η(u)− ε ≤ θ.

Taking ε ↓ 0 we conclude that u ∈ ∆θ. This proves the desired sequential
lower semicontinuity of η.

Now we are ready for the first existence result concerning problem (2).
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Theorem 1. If hypotheses H(A),H(f),H(B),H(U),H(Σ) and H(L) hold,
then problem (2) admits an optimal control u∗ ∈ SΣ.

Proof. From Proposition 3 we know that η(·) is sequentially lower semicon-
tinuous on Lq(T, Y )w, while Sq

U is weakly compact, thus sequentially weakly
compact (Eberlein-Smulian theorem). So by the Weirstrass theorem there
exists u∗ ∈ Sq

U such that η(u∗) = β. Evidently u∗ is the desired optimal
control.

If we split the cost integrand L(t, x, u), we can say more. So suppose that

L(t, x, u) = L1(t, x) + L2(t, u)

We make the following hypotheses:

H(L)1 : L1 : T × H → IR and L2 : T × Y → IR = IR ∪ {+∞} are two
integrands such that
(i) for every x ∈ H and u ∈ Y , t → L1(t, x) and t → L2(t, u) are measur-

able;
(ii) for every t ∈ T, x → L1(t, x) is continuous and u → L2(t, u) is lower

semicontinuous and convex;
(iii) for almost all t ∈ T and all |x| ≤ M , we have |L1(t, x)| ≤ γM (t) with

γM ∈ L1(T ) while for almost all t ∈ T and all u ∈ Y , we have

ϕ(t)− c3||u|| ≤ L(t, u) with ϕ ∈ L1(T ), c3 > 0.

Theorem 2. If hypotheses H(A), H(f), H(B), H(U), H(Σ) and H(L)1
hold, then problem (2) admits an optimal control-parameter pair [u∗, λ∗] ∈
Sq

U × SΣ; i.e., J(u∗, λ∗) = β.

Proof. From Theorem 1 we know that there exists u∗ ∈ Sq
U such that

η(u∗) = β. Then

β = sup[J1(u∗, λ) + J2(u∗) : λ ∈ SΣ] = sup[J1(u∗, λ) : λ ∈ SΣ] + J2(u∗).

By virtue of Proposition 2 and hypothesis H(L)1, λ → J1(u∗, λ) is sequen-
tially continuous from R(T, V ) (with the weak topology as always) into IR.
We claim that SΣ furnished with the relative weak topology as a subset
of R(T, V ), is compact. Recall that the weak topology of R(T, V ) coin-
cides with the relative weak∗-topology of L∞(T, M(V )w∗) (see Section 2).
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Since SΣ is relatively w∗-compact in L∞(T,M(V )w∗) (Alaoglu’s theorem),
it remains to show that SΣ is sequentially w∗-closed in L∞(T, M(V )).

So let λn ∈ SΣ, n ≥ 1, and assume that λn
w∗→ λ in L∞(T, M(V )w∗) as

n →∞. Then λ ∈ R(T, V ). Let g ∈ L1(T, C(V )). For every n ≥ 1 we have

(g, λn)0 ≤ σ(g, SΣ) = sup[(g, λ)0 : λ ∈ SΣ] = sup[
∫ b

0
(g(t), λ(t))dt : λ ∈ SΣ]

=
∫ b

0
sup[(g(t), λ) : λ ∈ Σ(t)]dt

(see Hu-Papageorgiou [19], Theorem 3.24, p. 183)

=
∫ b

0
σ(g(t),Σ(t))dt.

Take g(t) = χA(t)w with (A,w) ∈ L(T )× C(V ). We have
∫

A
(w, λ(t))dt ≤

∫

A
σ(w,Σ(t))dt

⇒ (w, λ(t)) ≤ σ(w,Σ(t)) for all t ∈ T \N(w), |N(w)| = 0.

Let {wm}m≥1 be dense in C(V ). Since σ(·,Σ(t)) is continuous, it follows
that

(w, λ(t)) ≤ σ(w, Σ(t)) for all t ∈ T \N, N = ∩m≥1N(wm), |N | = 0

⇒ λ(t) ∈ Σ(t) a.e. on T.

Hence SΣ ⊆ R(T, V ) is compact. Once again via the Weirstrass theorem,
we obtain λ∗ ∈ SΣ such that β = sup[J1(u∗, λ) : λ ∈ SΣ] + J2(u∗) =
J1(u∗, λ∗) + J2(u∗) = J(u∗, λ∗) .

4. Existence results for nonparametric problems

In this section, we turn our attention to nonparametric optimal control sys-
tems. To solve the optimal control problems, we prove an existence theorem
for evolution inclusions which is of independent interest and extends previ-
ous such results existing in the literature.

Let T, (X,H, X∗) and Y be as in the previous section. The system un-
der consideration is described by the following nonlinear evolution equation:

{
ẋ(t) + A(t, x(t)) = f(t, x(t))u(t) a.e. on T

x(0) = x0 ∈ H, u ∈ Sq
U

}
(7)
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We start with the study of a time-optimal control problem. So let K(t)
be the time-varying target-set and for a given control function u ∈ Sq

U , let
R(u) be the set of all trajectories of (7) generated by the control u. Let
Q(u) = {t ∈ T : x(t) ∈ K(t), x ∈ R(u)} . Under general hypotheses on the
data we will show that for all u ∈ Sq

U , R(u) 6= ∅ and we will assume that
∪u∈Sq

U
Q(u) 6= ∅. Let J(u) = infu Q(u) (we make the usual convention that

inf ∅ = +∞). Then the “ time-optimal control problem” is the following:

inf[J(u) : u ∈ Sq
U ] = t∗.(8)

A control u∗ ∈ Sq
U such that J(u∗) = t∗ is said to be optimal. We look for the

existence of optimal controls. Our approach will use an existence theorem
for evolution inclusions, which is of idependent interest, since it generalizes
earlier results in this direction, which assumed that A(t, ·) is monotone (see
Attouch-Damlamian [4], Papageorgiou [30], Papageorgiou-Shahzad [32], [33]
and the references therein).

So consider the following evolution inclusion:
{

ẋ(t) + A(t, x(t)) ∈ F (t, x(t)) a.e. on T

x(0) = x0

}
(9)

Our hypotheses on the data of (9) are as follows:

H(A)1 : A : T ×X → X∗ is an operator such that

(i) for every x ∈ X, t → A(t, x) is measurable;
(ii) for all t ∈ T, x → A(t, x) is demicontinuous and pseudomonotone

(see Hu-Papageorgiou [19], Definition 6.1, p. 365 or Zeidler [37], pp.
585–586);

(iii) for almost all t ∈ T and all x ∈ X, ||A(t, x)||∗ ≤ a(t) + c||x||p−1 with
a ∈ Lq(T )1, c > 0, 2 ≤ p < ∞, 1

p + 1
q = 1;

(iv) for almost all t ∈ T and all x ∈ X,

< A(t, x), x >≥ c1||x||p − c0||x||p−1 − a1(t) with c1, c0 > 0 and a1 ∈ L1(T ).

H(F) : F : T ×H → Pfc(H) is a multifunction such that

(i) for every x ∈ H, t → F (t, x) is measurable;
(ii) for all t ∈ T, GrF (t, ·) is sequentially closed in H ×Hw;
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(iii) for almost all t ∈ T and all x ∈ H, we have

|F (t, x)| = sup[|y| : y ∈ F (t, x)] ≤ a2(t) + c2|x|2/q

with a2 ∈ Lq(T )+, c2 > 0 and if p = 2, for almost all t ∈ T and all
x ∈ H, we have

|F (t, x)| ≤ a2(t) + c2|x|
a2 ∈ Lq(T )+, c2 > 0 and (y, x) ≤ γ for some γ > 0 and all y ∈ F (t, x).

The proof of our existence theorem is based on the following surjectivity
result for L-generalized pseudomonotone operators (see Section 2) due to
Papageorgiou-Papalini-Renzacci [31]. This result was first proved for single-
valued operators by Lions [22] and B.A. Ton [36].

Proposition 4. If Y is a reflexive Banach space, L : D(L) ⊆ Y → Y ∗

is a linear densely defined maximal monotone operator and K : Y →
2Y ∗ \{∅} is a bounded (i.e maps bounded sets to bounded sets), L-generalized
pseudomonotone, coercive operator, then R(L + K) = Y ∗.

Using this proposition we can have the following existence result for
problem (9).

Proposition 5. If hypotheses H(A)1,H(F ) hold and x0 ∈ H, then the so-
lution set S(x0) of 9 is nonempty, weakly compact in Wpq(T ) and compact
in C(T,H).

Proof. First, assume x0εX. We introduce the operator A1 : T ×X → X∗

defined by A1(t, x) = A(t, x + x0). Evidently, t → A1(t, x) is measur-
able, x → A1(t, x) is demicontinuous, pseudomonotone, ||A1(t, x)||∗ ≤
â(t) + ĉ||x||p−1 a.e on T for all x ∈ X, with â ∈ Lq(T )+, ĉ > 0 and
< A1(t, x), x) >≥ ĉ1||x||p − ĉ0||x||p−1 − â1(t) a.e on T for all x ∈ X, with
ĉ1, ĉ0, â1 ∈ L1(T )+. Thus all the properties of A(t, x) are passed to A1(t, x).

Similarly, let F1 : T ×H → Pfc(H) be defined by F1(t, x) = F (t, x+x0).
We see that t → F1(t, x) is measurable, GrF1(t, ·) is sequentially closed in
H ×Hw and

|F1(t, x)| = sup[|y| : y ∈ F1(t, x)] ≤ â2(t) + ĉ2(t)|x|2/q

a.e on T for all x ∈ H, with â2 ∈ Lq(T )+, ĉ2 > 0. Consider the following
evolution inclusion

{
ẋ(t) + A1(t, x(t)) ∈ F1(t, x(t)) a.e on T

x(0) = 0

}
(10)
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Note that x ∈ Wpq(T ) is a solution to (9) if and only if x̂(∗) = x(∗)−x0 is a
solution to (10). Hence it suffices to prove the proposition for problem (10).

To this end, let L : D(L) ⊆ Lp(T, X) → Lq(T,X∗) be the linear operator
defined by Lx = ẋ for x ∈ D(L) = {x ∈ Wpq(T ) : x(0) = 0} (the time
derivative is defined in the sense of vector-valued distributions). As in the
proof of Theorem 3.1 Papageorgiou-Papalini-Renzacci [31], we can easily
check that L is a maximal monotone linear operator. Let

Â1 : Lp(T,X) → Lq(T, X∗)

be defined by Â1(x)(·) = A1(·, x(·)) and

G1 : Lp(T, X) → Pfc(L
q(T, X∗))

by

G1(x) = Sq
−F1(·,x(·)) = {g ∈ Lq(T,X∗) : g(t) ∈ −F1(t, x(t)) a.e. on T} .

Then introduce the multivalued operator

K : Lp(T, X) → 2Lq(T,X∗)

defined by K(x) = Â1(x) + G1(x). Since G1(·) has nonempty values (see
for example Hu-Papageorgiou [19]), so does K(·). Moreover, it is easy to
see that for all x ∈ Lp(T, X),K(x) ∈ Pwkc(Lq(T,X∗)) and that K(·) is
bounded.

Claim 1. K is L-generalized pseudomonotone.
First, we show that K(·) is usc from Lp(T, X) into Lq(T, X∗)w. So let

C ⊆ Lq(T,X∗) be a nonempty and weakly colsed set. We need to show that

K−(C) = {x ∈ Lp(T,X) : K(x) ∩ C 6= ∅}

is closed. For this purpose, consider {xn}n≥1 ⊆ K−(C) such that xn → x
in Lp(T, X) as n → ∞. Let vnεK(xn) ∩ C, n ≥ 1. By virtue of the growth
conditions H(A)1 (iii) and H(F ) (iii), we have that {vn}n≥1 ⊆ Lq(T,X∗)
is bounded. Thus we may assume that vn → v in Lq(T,X∗) as n → ∞.
Let gn ∈ G1(xn) such that vn = Â1(xn) + gn, n ≥ 1. Because of hypothesis
H(F ) (iii) we may assume that

−g(t) ⊆ convw − limF1(t, xn(t)) ⊆ F1(t, x(t))
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a.e on T , with the last inclusion being a consequence of the fact that
GrF1(t, ·) is sequentially closed in H × Hw. Since xn → x in Lp(T,X)
as n →∞, we may also assume that xn(t) → x(t) a.e on T in X as n →∞.
We have vn(t) = A1(t, xn(t)) + gn(t) a.e on T , n ≥ 1. Note that

| < vn(t), xn(t)− x(t) > | ≤ ||vn(t)||∗||xn(t)− x(t)|| ≤ ϕ1(t)||xn(t)− x(t)||

a.e on T with ϕ1 ∈ Lq(T )+ and

| < gn(t), xn(t)− x(t) > |
= |(gn(t), xn(t)− x(t))| ≤ |gn(t)||xn(t)− x(t)| ≤ ϕ2(t)|xn(t)− x(t)|

a.e on T with ϕ2 ∈ Lq(T )+. Hence < vn(t), xn(t)− x(t) >, < gn(t), xn(t)−
x(t) >→ 0 a.e on T as n → ∞ and so < A1(t, xn(t)), xn(t) − x(t) >→ 0
a.e on T as n → ∞. Because A1(t, ·) is pseudomonotone we have
that A1(t, xn(t)) w→ A1(t, x(t)) a.e on T in X∗ as n → ∞. Then via
the generalized dominated convergence theorem (see for example Ash [3],
Theorem 7.5.2, p. 295), we have that Â1(xn) w→ Â1(x) in Lq(T,X∗). Thus
in the limit as n →∞ we obtain v = Â1(x)+g with g ∈ G1(x) and x ∈ C. So
x ∈ K−(C) which proves the upper semicontinuinty of K(·) from Lp(T,X)
into Lq(T,X∗)w.

Next let {xn}n≥1 ⊆ D(L) and assume that xn → x in Lp(T,X), Lxn →
Lx in Lq(T, X∗) (hence xn → x in Wpq(T )), x∗n ∈ K(xn), n ≥ 1, x∗n → x∗

in Lq(T,X∗) and lim((x∗n, xn − x)) ≤ 0. We have x∗ = Â1(xn) + gn with
gn ∈ G1(xn), n ≥ 1. As above we may assume gn → g in Lq(T,H).
Moreover, since Wpq(T ) is embedded compactly in Lp(T, H), we also have
that xn → x in Lp(T, H) as n →∞. Thus we obtain

lim((Â1(xn), xn − x)) = lim((x∗n − gn, xn − x))

≤ lim((x∗n, xn − x))− lim(gn, xn − x)pq ≤ 0.

But from Proposition 1 of Papageorgiou [29] we know that Â1 is
L-generalized pseudomonotone. Hence ((Â1(xn), xn)) → ((Â1(x), x)) and
so ((x∗n, xn)) → ((x∗n, x)) as n →∞ and this proves the claim.

Claim 2. K(·) is coercive.
(

i.e. lim
||x||p→∞

inf[((x∗, x)) : x∗εK(x)]
||x||p = +∞

)
.
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Let x ∈ Lp(T, X) and x∗ ∈ K(x). We have x∗ = Â1(x) + g with g ∈ G1(x)
and so

((x∗, x)) = ((Â1(x), x)) + ((g, x)).

First, assume that p > 2. We have

((Â1(x), x)) ≤ ĉ1||x||pp − k̂0||x||p−1
p − ||â||1 for some k̂0 > 0.

Also via Young’s inequality with ε > 0, we obtain

((g, x)) = (g, x)pq ≥ −β
1

εqq
2q||â||qq −

θ

εqq
2q ĉq

2||x||2p − β
εp

p
||x||pp, θ > 0.

Thus finally we have

((x∗, x)) ≥ (ĉ1−β
εp

p
)||x||pp− k̂0||x||p−1

p −θ1(ε)||x||2p−θ2(ε), θ1(ε), θ2(ε) > 0.

Choose ε > 0 so that ĉ1 > β εp

p . Then since p > 2, we see that

((x∗, x))
||x||p → +∞ as ||x||p → +∞

⇒ K(·) is coercive as claimed (for p > 2).

If p=2, then we have

((x∗, x)) ≥ ĉ1||x||22 − θ3||x||2 − θ4, with θ3, θ4 > 0

(see hypothesis H(F ) (iii)). So again we have coercivity of K(·).
Because of Claims 1 and 2 we can apply Proposition 4 and have that

R(L+K) = Lq(T, X∗) hence problem (10) and equivalently problem (9) has
a solution x ∈ Wpq(T ) (provided x0 ∈ X).

Next we remove the extra condition that x0 ∈ X. So let x0 ∈ H. Then
we can find {xon}n≥1 ⊆ X such that xon → x0 in H as n → ∞. From the
first part of the proof we know that the multivalued Cauchy problem:

ẋ(t) + A(t, x(t)) ∈ F (t, x(t)) a.e. on T

x(0) = x0n

has a solution xn ∈ Wpq(T ), n ≥ 1. Then

ẋn(t) + A(t, xn(t)) = hn(t) a.e on T,
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xn(0) = x0n, n ≥ 1

with hn(t) ∈ F (t, xn(t)) a.e on T , n ≥ 1. With the same a priori estimation
as in the proof of Theorem 1 of Aizicovici-Papageorgiou [2], we can check
that {xn}n≥1 ⊆ Wpq(T ) is bounded. Thus we may assume that xn → x in
Wpq(T ) as n →∞. Also we can say that gn → g in Lq(T, H). We have

lim((Â(xn)− hn, xn − x)) = lim((ẋn, x− xn)).

The integration by parts formula for functions in Wpq(T ) gives us

((ẋn, x− xn)) ≤ 1
2
|x0n − x(0)|2 + ((ẋ, x− xn)) → 0 as n →∞.

Also ((gn, xn − x)) = (gn, xn − x)pq → 0 as n →∞. So we conclude that

lim((Â(xn), xn − x)) ≤ 0

⇒ Â(xn) w→ Â(x) in Lq(T,X∗) as n →∞

(by the L-generalized pseudomonotonicity of A). Therefore in the limit as
n →∞, we have

ẋ + Â(x) = h

with

h(t) ∈ convw − limF (t, xn(t)) ⊆ F (t, x(t)) a.e on T (as before).

Thus x ∈ S(x0). This proves the existence part of the proposition.
Now we will establish the compactness properties of the solution set

S(x0) ⊆ Wpq(T ). From standard a priori estimation (see for example
Aizicovici-Papageorgiou [2] and Papageorgiou-Shahzad [32]), we know that
there exist M1,M2,M3 > 0 such that for all x ∈ S(x0) we have

|x(t)| ≤ M1 for all t ∈ T, ||x||Lp(T,X) ≤ M2 and ||ẋ||Lq(T,X∗) ≤ M3.

Thus S(x0) is bounded hence relatively weakly compact in Wpq(T ). Set
ψ(t) = a2(t) + c2M

2/q
2 for all t ∈ T . Then ψ ∈ Lq(T )+. Moreover, by

replacing F (t, x) by

F̂ (t, x) =





F (t, x) if |x| ≤ M1

F (t, M1x
|x| ) if |x| > M1
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we may assume without any loss of generality that |F (t, x)| = sup[|y| : y ∈
F (t, x)] ≤ ψ(t) a.e on T for all x ∈ H. Then we introduce the set

V = {gεLq(T, H) : |g(t)| ≤ ψ(t) a.e. on T} .

On V we consider the relative weak Lq(T, H)-topology. Furnished with this
topology, V is a compact metrizable space. Then let R : V → 2C(T,H) be
the multifunction which to every g ∈ V assigns the set of solutions to the
following Cauchy problem:

{
ẋ(t) + A(t, x(t)) = g(t) a.e. on T

x(0) = x0.

For every g ∈ V , we have R(g) 6= ∅.

Claim 3. R(V ) is compact in C(T,H).
Let {xn}n≥1 ⊆ R(V ). Then by definition xn ∈ R(gn), gn ∈ V, n ≥ 1.

We may assume that gn → g in Lq(T, H). From the a priori estimation
mentioned above, we have that {xn}n≥1 ⊆ Wpq(T ) is bounded and so we
may assume that xn → x in Wpq(T ), xn → x in Lp(T,H) and xn(t) → x(t)
for all t ∈ T \N, |N | = 0 as n →∞.

Observe that {< x̂n(·), xn(·) − x(·) >}n≥1 ⊆ L1(T ) in uniformly inte-
grable. So given ε > 0, we can find t ∈ T \N such that

∫ b

t
| < ẋn(s), xn(s)− x(s) > |ds < ε.(11)

As before let ((·, ·))t denote the duality brackets for the pair (Lp([0, t], X),
Lq([0, t], X∗)). From the integration by parts formula for functions in
Wpq(T ), we have

((ẋn, xn − x))t =
1
2
|xn(t)− x(t)|2 + ((ẋ, xn − x))t → 0 as n →∞.

We note that

((ẋn, xn − x)) = ((ẋn, xn − x))t +
∫ b
t < ẋn(s), x(s)− x(s) > ds

⇒ ((ẋn, xn − x)) ≥ ((ẋn, xn − x))t − ε (see (11) above)

⇒ lim((ẋn, xn − x)) ≥ −ε.

(12)
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Taking ε ↓ 0 we conclude that lim((ẋn, xn − x)) ≥ 0. Also from (11) and
(12) we have

((ẋn, xn − x)) ≤ ((ẋn, xn − x))t + ε

lim((ẋn, xn − x)) ≤ ε.

Let ε ↓ 0 to conclude that lim((ẋn, xn − x)) ≤ 0. Therefore we can say that
((ẋn, xn − x)) → 0 as n → ∞. Since ((ẋn, xn − x)) + ((Â(xn), xn − x)) =
(gn, xn−x)pq → 0 as n →∞⇒ ((Â(xn), xn−x)) → 0 as n →∞. But recall
that Â is L-generalized pseudomonotone (see Papageorgiou [29], Proposition
1). So Â(xn) w→ Â(x) in Lq(T, X∗). Thus in the limit as n →∞, we obtain

ẋ + Â(x) = g, g ∈ V

⇒ ẋ + A(t, x(t)) = g(t) a.e. on T

x(0) = x0, g ∈ V

⇒ x ∈ R(V ).

From the integration by parts formula we have

1
2
|xn(t)− x(t)|2 = ((ẋn − ẋ, xn − x))t

= ((gn − g, xn − x)t − ((Â(xn)− Â(x), xn − x))t

⇒ 1
2
|xn(t)− x(t)|2 ≤

∫ b

0
|(gn(s)− g(s), xn(s)− x(s))|ds

∫ b

0
| < A(s, xn(s)), xn(s)− x(s) > |ds + ((Â(x), xn − x))t.(13)

Note that
∫ b
0 |(gn(s)− g(s), xn(s)−x(s))|ds → 0 as n →∞. Moreover, from

the proof of Proposition 1 of Papageorgiou [29], we know that if ξn(s) =
< A(s, xn(s), xn(s) − x(s) >,n ≥ 1, then ξn → 0 in L1(T ) as n → ∞. So∫ b
0 | < A(s, xn(s), xn(s)− x(s) > |ds → 0 as n →∞. Finally, consider

sup
t∈T

((Â(x), xn − x))t = sup
t∈T

∫ t

0
< A(s, x(s), xn(s)− x(s) > ds.

Let dn(t) =
∫ t
0 < A(s, x(s), xn(s) − x(s) > ds. Evidenlty dn(·) ∈ AC(T ).

Let tn ∈ T such that dn(tn) = supt∈T dn(t), n ≥ 1. We may say that tn → t
in T . Then

dn(tn) = ((Â(x), xn − x))tn = ((χ[0,tn]Â(x), xn − x)).
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Observe that
∫ b

0
||χ[0,tn](s)A(s, x(s))− χ[0,t](s)A(s, x(s))||q∗ds

∫ tn∨t

tn∧t
||A(s, x(s))||q∗ds (with tn ∨ t = max {tn, t} , tn ∧ t = min {tn, t})

and
∫ tn∨t
tn∧t ||A(s, x(s))||q∗ds → 0 as n → ∞. So χ[0,tn]Â(x) → χ[0,t]Â(x) in

Lq(T, X∗) as n →∞. Hence dn(tn) → 0 as n →∞ and so dn → 0 in C(T )
as n →∞. Therefore sup((Â(x), xn − x))t → 0 as n →∞.

Returnig to (13) and using these convergences, we infer that xn → x in
C(T,H) as n →∞ and so R(V ) is indeed compact in C(T,H).

Since S(x0) ⊆ R(V ), to finish the proof it suffices to show that S(x0) is
weakly closed in Wpq(T ). So let {xn}n≥1 ⊆ S(x0) and assume that xn → x
in Wpq(T ) as n → ∞ and since xn(t) → x(t) in H for all t ∈ T as n → ∞
(recall that Wpq(T ) is embedded continuously in C(T,H)), we have that
g ∈ Sq

F (·,x(·)) (see Hu-Papageorgiou [19], Proposition 3.9, p. 694). As before,

in the limit as n → ∞, we can check that ẋ + Â(x) = g and so S(x0) is
weakly closed in Wpq(T ). Therefore we conclude that S(x0) is nonempty,
weakly compact in Wpq(T ) and compact in C(T, H).

Now we are ready to deal with the time-optimal problem (8). We introduce
the following hypotheses on the data of the problem:

H(f)1 : f : T ×H → L(Y, H) is a map such that

(i) for every x ∈ H and u ∈ Y , t → f(t, x)u is measurable;
(ii) for every t ∈ T and every h ∈ H, x → f(t, x)∗h is continuous;
(iii) for almost all t ∈ T and all x ∈ H,

||f(t, x)||L ≤ a2(t) + c2|x|p−1

with a2 ∈ Lq(T )+, c2 > 0, 2 < p < ∞, 1
p + 1

q and if p = 2, then for
almost all t ∈ T , all x ∈ H and all u ∈ U(t), we have

(f(t, x)u, x) ≤ γ with γ > 0.

H(U)1 : U : T → Pfc(H) is measurable and for almost all t ∈ T

|U(t)| = sup[||u||Y : u ∈ U(t)] ≤ M, M > 0.
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H(K) : K : T → Pfc(H) is usc.

H0 : ∪t∈T (Γ(t) ∩K(t)) 6= ∅, where Γ(t) = {x(u)(t) : u ∈ Sq
u} .

Remark. Hypothesis H0 is a controllability condition and is equivalent to
saying that ∪u∈Sq

U
Q(u) 6= ∅ where Q(u) = {t ∈ T : x(t) ∈ K(t), x ∈ R(u)}.

Theorem 3. If hypothesis H(A),H(f)1,H(U)1,H(K) and H0 hold, then
the time-optimal control problem (8) admits a solution u∗ ∈ Sq

U .

Proof. Let F : T ×H → Pfc(H) be the multifunction defined by F (t, x) =
f(t, x)U(t). Since U(·) is measurable (cf. hypothesis H(U)1), we can find un :
T → Y, n ≥ 1, Lebesgue measurable functions such that U(t) = {un(t)}n≥1

for all t ∈ T (see Hu-Papageorgiou [19], Theorem 2.4, p. 156). Then

F (t, x) = {f(t, x)un(t)}n≥1

⇒ t → F (t, x) is measurable.

Also let yn ∈ F (t, xn), n ≥ 1 and assume that xn → x, yn → y in H as
n → ∞. We have yn = f(t, xn)un, un ∈ U(t), n ≥ 1. By passing to a
subsequence if necessary, we may assume that un

w→ u in Y as n →∞ and
u ∈ U(t). Then by virtue of hypothesis H(f)1 (ii) for every h ∈ H we have

(f(t, xn)un, h) = (un, f(t, xn)∗h) → (u, f(t, x)∗h) = (f(t, x)u, h) as n →∞
⇒ yn

w→ f(t, x)u in H as n →∞ with u ∈ U(t),

⇒ y = f(t, x)u, u ∈ U(t), i.e. y ∈ F (t, x).

So GrF (t, ·) is sequentially closed in H ×Hw. In addition, we have

|F (t, x)| = sup[|y| : y ∈ F (t, x)] ≤ Ma2(t) + Mc2|x|p−1

a.e. on T for all x ∈ H

Thus if we consider problem (9) with F (t, x) as above, we have that S(x0)
is nonempty weakly compact in Wpq(T ) and compact in C(T,H) (see
Proposition 4).

Now let {un}n≥1 ⊆ Sq
U be a minimizing sequence for the time-optimal

control Problem 8.
Then by definition we have

xn(tn) ∈ K(tn) with xn ∈ R(un), n ≥ 1, tn ↓ t∗ as n →∞.
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Note that {xn}n≥1 ⊆ S(x0). So we may assume that un → u in Lq(T, Y ), u ∈
Sq

U , xn
w→ x in Wpq(T ) and xn → x in C(T,H) as n → ∞. Hence we have

xn(tn) → x(t∗) in H as n →∞. Also by virtue of hypothesis H(K), we have
x(t∗) ∈ limK(tn) ⊆ K(t∗). To finish the proof of the theorem it remains to
show that x ∈ R(u). To this end, let h ∈ Lp(T,H). We have

(f(·, xn(·))un(·), h)pq

=
∫ b

0
(f(t, xn(t))un(t), h(t))dt =

∫ b

0
(un(t), f(t, xn(t))∗h(t))Y,Y ∗dt

⇒
∫ b

0
(u(t), f(t, x(t))∗h(t))Y,Y ∗dt =

∫ b

0
(f(t, x(t))u(t), h(t))dt.

Since h ∈ Lp(T, H) was arbitary, we infer that

f(·, xn(·))un(·) w→ f(·, x(·))u(·) in Lq(T,H) as n →∞.

We have

((Â(xn), xn − x)) = ((−ẋn + f(·, xn(·))un(·), xn − x))

= ((−ẋn, xn − x)) + (f(·, xn(·))un(·), xn − x)).

From the proof of Proposition 4 we know that ((−ẋn, xn−x)) → 0 as n →∞,
while from the previous considerations we have that

(f(·, xn(·))un(·), xn − x)pq → 0 as n →∞.

Thus we obtain
lim((Â(xn), xn − x)) = 0.

As before via the L-generalized pseudomonotonicity of Â(·), we have that
Â(xn) → Â(x) in Lq(T, X∗) as n →∞. So in the limit as n →∞, we obtain

ẋ + Â(x) = f(·, x(·))u(·)
⇒ ẋ(t) + Â(t, x(t)) = f(t, x(t))u(t) a.e. on T

x(0) = x0, u ∈ Sq
U

⇒ x ∈ R(u).

We can also deal with optimal problems of the Meyer type. So now our cost
functional has the form

J(u) =
∫ b

0
L(t, x(u)(t), u(t))dt + ϕ(x(u)(b)) → inf

u∈Sq
U

= β.(14)
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For the cost integrand L(t, x, u) we assume hypotheses H(L) (see Section
3). For ϕ(·) we make the following hypothesis:

H(ϕ) : ϕ : H → IR = IR ∪ {+∞} is lower semicontinuous.
Then working as in the proof of Theorem 3 with minimizing sequences

(direct method), we can have the following theorem.

Theorem 4. If hypotheses H(A)1,H(f)1,H(U)1,H(L) and H(ϕ) hold, then
problem (14) admits an optimal state-control pair (x∗, u∗) ∈ Wpq(T )× Sq

U .

We close this section with a partial generalization of Proposition 4 in which
the multifunction F (t, x) is defined only on T × X. For this purpose our
hypotheses on F are now the following:

H(F)1 : F : T ×X → Pfc(H) is a multifunction such that

(i) for every x ∈ X, t → F (t, x) is measurable;
(ii) for all t ∈ T, GrF (t, ·) is sequentially closed in X ×Hw;
(iii) for almost all t ∈ T and all x ∈ X, we have

|F (t, x)| = sup[|y| : y ∈ F (t, x)] ≤ a2(t)+c2||x||p−1 with a2 ∈ Lq(T ), c2 > 0;

(iv) there exists γ > 0 such that for almost all t ∈ T , all x ∈ X and all
y ∈ F (t, x) we have (y, x) ≤ γ.

Proposition 6. If hypotheses H(A)1,H(F )1 hold and x0 ∈ H, then the
solution set S(x0) of problem (9) is nonempty, weakly compact in Wpq(T )
and compact in C(T,H).

Proof. As in the proof of Proposition 4, first we treat the case x0 ∈ X.
We introduce A1(t, x) = A(t, x + x0), F1(t, x) = F1(t, x + x0) and consider
Problem (10). Let K = Â1 + G1 : Lp(T, X) → Pwkc(Lq(T, X∗)), where
Â1 and G1 are as in the proof of Proposition 4. Finally let L : D(L) ⊆
Lp(T,X) → Pwkc(Lq(T,X∗)) be the linear maximal monotne operator de-
fined by L(x) = ẋ for all x ∈ D(L) = {x ∈ Wpq(T ) : x(0) = 0}

Claim 1. K(·) is L-generalized pseudomonotone and bounded.
Boundedness is clear. So we need to show the L-generalized pseu-

domonotonicity. First, as in the proof of Proposition 6, we have that
K(·) is usc from Lp(T,X) into Lq(T,X∗)w. Next let {xn} ⊆ D(L) such
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that xn → x in Lp(T, X), Lxn → Lx in Lq(T, X∗) (hence xn → x in
Wpq(T )). x∗n ∈ K(xn), n ≥ 1, x∗n → x∗ in Lq(T, X∗) as n → ∞ and
lim((x∗n, xn − x)) ≤ 0. Since xn → x in Wpq(T ), we also have that xn → x
in Lp(T,H) as n →∞. For every n ≥ 1 we can write that x∗n = Â1(xn)+gn

with gn ∈ G1(xn) and we may assume that gn → g in Lq(T, H) as n → ∞.
Then we have lim((Â1(xn), xn − x)) ≤ 0 since Â1 is L-generalized pseu-
domonotone, Â1(xn) w→ Â1(x) and ((Â1(xn), xn)) → ((Â1(x), x)). More-
over, from the proof of Proposition 1, p. 440 of Papageorgiou [29] we know
that xn(t) → x(t) a.e. on T in X as n → ∞. So using hypothesis H(F )1
(ii) and Proposition 3.9 p. 694 of Hu-Papageorgiou [19], we obtain that
g ∈ G1(x). Therefore in the limit as n →∞ we have that

x∗ = Â1(x) + g, with g ∈ G1(x)

⇒ x∗ ∈ K(x).

Also ((x∗n, xn)) → ((x∗, x)). Thus K is L-generalized pseudomonotone as
claimed.

Claim 2. K(·) is coercive.
Let x ∈ Lp(T, X) and x∗ ∈ K(x). Using hypotheses H(A)1 (iv) and

H(F )1 (iv), we have

((x∗, x)) ≥ ĉ1||x||pp − k1||x||p−1
p − k2 for some ĉ1, k1, k2 > 0.

This proves the coercivity of K(·).
Apply Proposition (5) to obtain x̂ ∈ Wpq(T ) a solution to (10). Then

x(·) = x̂(·) + x0 ∈ Wpq(T ) is a solution to (9). The existence of a solution
when x0 ∈ H and the compactness of the solution set S(x0), are proved as
in Proposition 4.

Remark. Proposition 6 extends the work of Hirano [16] where A(t, ·) is
monotone, F is single-valued and F (t, ·) is both continuous and sequentially
weakly continuous.

5. Necessary conditions for saddle point
optimality

In this section, we derive necessary conditions for saddle point optimality in
the parametric optimal control problem of Section 3.
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So T, (X, H,X∗), and V are as in Section 3 and the control space Y is a
separable Banach space. Let [u∗, λ∗] ∈ Sq

U × SΣ be a saddle point for the
cost functional J(u, λ) =

∫ b
0 L(t, x(u, λ)(t), u(t))dt. Hence we have

J(u∗, λ) ≤ J(u∗, λ∗) ≤ J(u, λ∗), for all u ∈ Sq
U and all λ ∈ SΣ.

To derive necessary conditions for this kind of optimality, we will need
stronger hypotheses on the data. In what follows x∗ = x(u∗, λ∗).

H(A)2 : A : T ×X → X∗ is an operator such that

(i) for all x ∈ X, t → A(t, x) is measurable;
(ii) for all t ∈ T, x → A(t, x) is continuously Frechet differentiable and for

almost all t ∈ T all x, y ∈ X we have

< A(t, x)−A(t, y), x− y >≥ β||x− y||p with β > 0, 2 ≤ p < ∞;

(iii) for almost all t ∈ T and all x ∈ X we have ||a(t, x)||∗ ≤ a1(t)+c1||x||p−1

with a1 ∈ Lq(T )+, c1 > 0, 1
p + 1

q = 1 and A
′
x(·, x∗(·))y ∈ Lq(T,X∗) for

all y ∈ X;
(iv) for almost all t ∈ T and all y ∈ X we have

< A(t, y), y > ≥ c||y||p − a(t) and < A
′
x(t, x∗(t))y, y >

≥ ĉ||y||p − â(t) with c, ĉ > 0 and â ∈ L1(T )+.

H(f)3 : f : T ×H × V → H is a function such that

(i) for all x ∈ H, v ∈ V, t → f(t, x, v) is measurable;
(ii) for almost all t ∈ T , all x, y ∈ H and all v ∈ V

|f(t, x, v)− f(t, y, v)| ≤ k(t)|x− y| with k ∈ L1(T )+,

for all t ∈ T and all x ∈ v → f(t, x, v) is continuous and for all t ∈ T
and all v ∈ V x → f(t, x, v) is continuously Frechet differentiable with
f
′
x(·, x∗(·), v)h ∈ Lq(T,H) for all h ∈ H;

(iii) for almost all t ∈ T all x ∈ H and all v ∈ V we have

|f(t, x, v)| ≤ a2(t) + c2|x|2/q with a2 ∈ Lq(T )+, c2 > 0.

Let U ∈ Pfc(Y ). The set of admissible controls is given by

Ûad = {u : T → Y is measurable and u(t) ∈ U a.e. on T} .
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The topology on Ûad is the metric topology induced by the metric.

d̂(u1, u2) = | {t ∈ T : u1(t) 6= u2(t)} |

(recall that | · | denotes the Lebesgue measure on T ). It is well-known that
(Ûad, d̂) is a complete metric space (see Ekeland [13]).

H(L)2 : L : T ×H × Y → IR is an integrand such that
(i) for all x ∈ H, u ∈ Y, t → L(t, x, u) is measurable;
(ii) for all t ∈ T, (x, u) → L(t, x, u) is continuous;
(iii) for all t ∈ T and all u ∈ Y, x → L(t, x, u) in continuously Frechet

differentiable and L
′
x(·, x∗(·), u∗(·)) ∈ ÃL1(T,H).

We start with a simple lemma that we will need in the sequel.

Lemma 1. Given h ∈ L1(T, H) and δ > 0, we can find Cδ ⊆ T such that
|Cδ| = δ|T | and

sup
t∈T

∣∣∣δ
∫ t

o
h(s)ds−

∫

Cδ∩[0,t]
h(s)ds

∣∣∣ = o(δ)
(

o(δ)
δ

→ 0 as δ ↓ 0
)

.

Proof. Consider the map t → χ[0,t](·)h(·). This map is continuous from
T into L1(T,H). Invoking Proposition 1 of Fryszkowski-Rzeżuchowski [14],
we deduce that given 0 < δ < 1, we can find Cδ ⊆ T with

|Cδ| = δ|T | such that sup
t∈T

∣∣∣δ
∫ t

0
h(s)ds−

∫

Cδ∩[0,t]
h(s)ds

∣∣∣ = o(δ).

Now we are ready to state and prove our necessary conditions for saddle
point optimality.

Theorem 5. If hypotheses H(A)2, H(f)3, H(B), H(Σ), H(L)2 hold and
(u∗, λ∗) ∈ Ûad×SΣ is a saddle point for the cost functional J(·, ·) then there
exists ϕ ∈ Wpq(T ) such that
(a) −ϕ̇(t) + A

′
x(t, x∗(t))∗(t)− ∫

V f
′
x(t, x∗(t), v)ϕ(t)λ∗(t)(dv)

= L
′
x(t, x∗(t), u∗(t)) a.e. on T ϕ(b) = 0 (“adjoint equation”);

(b) (ϕ(t),
∫
V f(t, x∗(t), v)(λ− λ∗(t))(dv)) ≤ 0 a.e on T for all λ ∈ Σ(t).

(c) L(t, x∗(t), u) − L(t, x∗(t), u∗(t)) + (B(t)∗ϕ(t), u − u∗(t)) ≥ 0 a.e. on T
for all λ ∈ Σ(t).
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Proof. Since by (u∗, λ∗) is saddle point of J(·, ·), we have

J(u∗, λ) ≤ J(u∗, λ∗) ≤ J(u, λ∗) for all [u, λ] ∈ Ûad × SΣ.(15)

Let v ∈ Ûad. Then by virtue of Lemma 1, given δ > 0 we can find Cδ ⊆ T
such that |Cδ| = δ|T | and sup |δ ∫ t

0 h(s)ds− ∫
Cδ∩[0,t] h(s)ds| = o(δ), where

h(s) =

(
B(s)(v(s)− u∗(s))

L(s, x∗(s), v(s))− L(s, x∗(s), u(s))

)
.

We introduce the following spike variations of the optimal control u∗:

uδ(t) =

{
u∗(t) if t ∈ T \ Cδ

v(t) if t ∈ Cδ.

Evidently d̂(uδ, u
∗) = δ. Let yδ = x(uδ, λ

∗). We have:

((ẏ − ẋ∗, yδ − x∗))t + ((Â(y)δ − Â(x∗), yδ − x∗))t

=
∫ t

0

∫

V
(f(t, yδ(t), v)− f(t, x∗(t), v), yδ(t)− x∗(t))λ∗(t)(dv)dt

+ (B̂(uδ − u∗), yδ − x∗)pqt.

Using the integration by parts formula, the monotonicity of Â and hypothesis
H(f)3 (ii) we obtain

1
2
|yδ(t)−x∗(t)|2≤

∫ 1

0
(k(s)|yδ(s)−x∗(s)|+|B(s)(uδ(s)−u∗(s)|)|yδ(s)−x∗(s)|ds.

Invoking Lemma A.5 p. 157 of Brezis [6], we have

|yδ(t)− x∗(t)| ≤
∫ 1

0
(k(s)|yδ(s)− x∗(s)|+ |B(s)(uδ(s)− u∗(s)|)ds

≤
∫ 1

0
(k(s)|yδ(s)− x∗(s)|+ ||B(s)||∞2|U |d̂(uδ, u

∗).

Here |U | = sup {||u||Y : u ∈ U}. Using Gronwall’s inequality, we finally have

|yδ(t)− x∗(t)| ≤ β1d̂(uδ, u
∗) for some β1 > 0 and all t ∈ T

⇒ yδ → x∗ in C(T, H) as δ ↓ 0.
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On the other hand from the uniform monotonicity of Â (cf. hypothesis
H(A)2 (ii)), we have

β||yδ − x∗||pp ≤ ||yδ − x∗||2∞||k||1 + ||yδ − x∗||∞||b||∞2|U | → 0 as δ ↓ 0;

⇒ yδ → x∗ in Lp(T,X) as δ ↓ 0.

Now set wδ = 1
δ (yδ−x∗) ∈ Wpq(T ). From hypotheses H(A)2 (ii) and H(f)3

(iii) we have that

ẇδ(t) + A
′
x(t, x∗(t))wδ(t)

=
∫

V
f
′
x(t, x∗(t), v)wδ(t)λ∗(t)(dv) + B(t)

1
δ
(uδ(t)− u∗(t)) +

o(t, δ)
δ

with o(·, δ) ∈ Lq(T,X∗). From the choice of the set Cδ ⊆ T we have

sup
t∈T

δ
∣∣∣
∫ t

0
B(s)(v(s)− u∗(s))ds−

∫

Cδ∩[0,t]
B(s)(v(s)− u∗(s)ds

∣∣∣ = o(δ)

⇒ sup
t∈T

∣∣∣δ
∫ t

0
B(s)(v(s)− u∗(s))ds−

∫ t

0
B(s)(

uδ(s)− u∗(s)
δ

)ds
∣∣∣ =

o(δ)
δ

⇒ B(·)uδ − u∗(·)
δ

||·||w→ B(·)(v(·)− u∗(·)) as δ ↓ 0,

where by || · ||w we denote the “weak norm” on L1(T, H); i.e, if h ∈ L1(T,H)

||h||w = sup
t∈T

∣∣∣
∫ t

0
h(s)ds

∣∣∣.

But from Papageorgiou [28] (see Lemma, p. 327), we know that

B(·)uδ(·)− u∗(·)
δ

w→ B(·)(v(·)− u∗(·)) in Lq(T, H) as δ ↓ 0.

Using standard a priori estimation (see for example Papageorgiou-Shahzad
[32]), we can check that {wδ}δ>0 ⊆ Wpq(T ) is relatively weakly compact. So
we have wδ

w→ z in Wpq(T ) as δ ↓ 0 and




ż(t) + A
′
x(t, x∗(t))z(t) =

∫

V
f
′
x(t, x∗(t), v)z(t)λ∗(t)(dv)

+ B(t)(v(t)− u∗(t)) a.e. on T

z(0) = 0





(16)

We introduce the adjoint equation
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



−ϕ̇(t) + A
′
x(t, x∗(t))∗ϕ(t)−

∫

V
f
′
x(t, x∗(t), v)∗ϕ(t)λ∗(t)(dv)

= L
′
x(t, x∗(t), u∗(t)) a.e. on T

ϕ(b) = 0





From Theorem 30.A, p. 771 of Zeidler [37], we know that this problem has
a unique solution ϕ ∈ Wpq(T ). So we obtain part (a) of the theorem. We
have

((−ϕ̇, z)) + ((Â
′
x(x∗)∗ϕ, z)) −

∫ b

0

(∫

V
f
′
x(t, x∗(t), v)∗ϕ(t)λ∗(t)(dv), z(t)

)
dt

= (L̂
′
x(x∗, u∗), z)pq,

where Â
′
x(x∗)(·) = A

′
x(·, x∗(·)) and L̂

′
x(x∗, u∗)(·) = L

′
x(·, x∗(·), u∗(·)). From

the integration by parts formula for functions in Wpq(T ), we have

((−ϕ̇, z)) = ((ϕ, ż))

Therefore we obtain

((ϕ, ż)) + ((ϕ, Â
′
x(x∗)z))

−
∫ b

0
(ϕ(t),

∫

V
f
′
x(t, x∗(t), v)λ∗(t)(dv)z(t))dt = (L̂

′
x(x∗, u∗), z)pq

⇒ ((ϕ, B̂(v − u∗))) = (L
′
x(x∗, u∗), z)pq (see (16)).

(17)

From the second inequality in (15), we know that J(u∗, λ∗) ≤ J(u, λ∗) for
all u ∈ Sq

U . So we have:

∫ b

0
L(t, x∗(t), u∗(t))dt ≤

∫ b

0
L(t, x(u, λ∗)(t), u(t)dt for all u ∈ Sq

U

⇒
∫ b

0
(L(t, yδ(t), uδ(t))− L(t, x∗(t), u∗(t))dt ≥ 0 for all δ > 0

⇒
∫

Cδ

(L(t, yδ(t), v(t))− L(t, x∗(t), u∗(t))dt

+
∫

T\Cδ

(L(t, yδ(t), u∗(t))− L(t, x∗(t), u∗(t))dt ≥ 0.

(18)

By hypothesis H(L)2 (iii), L(t, ·, u) is continuously Frechet differentiable.
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So we have ∫

T\Cδ

(L(t, yδ(t), u∗(t))− L(t, x∗(t), u∗(t)))dt

=
∫

T\Cδ

(L
′
x(t, x∗(t), u∗(t)), yδ(t)− x∗(t))dt + o(δ)

=
∫

T
(L

′
x(t, x∗(t), u∗(t)), yδ(t)− x∗(t))dt

−
∫

Cδ

(L
′
x(t, x∗(t), u∗(t)), yδ(t)− x∗(t))dt + o(δ).

Note that ∣∣∣
∫

Cδ

(L
′
x(t, x∗(t), u∗(t)), yδ(t)− x∗(t))dt

∣∣∣

≤ ||y − x∗||∞
∫

Cδ

||L′x(t, x∗(t), u∗(t))||Ldt = o1(δ)

since yδ → x∗ in C(T, H) and
∫
Cδ
||L′x(t, x∗(t), u∗(t))||Ldt → 0 as δ ↓ 0 (see

hypothesis H(L)2 (iii) and recall that |Cδ| = δ|T | ↓ 0 as δ ↓ 0). So we have
∫

T\Cδ

(L(t, yδ(t), u∗(t))− L(t, x∗(t), u∗(t)))dt

≤
∫

T
(L

′
x(t, x∗(t), u∗(t)), yδ(t)− x∗(t))dt + o2(δ).

(19)

Also we have ∫

Cδ

(L(t, yδ(t), v(t))− L(t, x∗(t), u∗(t)))dt

=
∫

Cδ

(L(t, yδ(t), v(t))− L(t, x∗(t), v(t)))dt

+
∫

Cδ

(L(t, x∗(t), v(t))− L(t, x∗(t), u∗(t))dt

=
∫

Cδ

(L
′
x(t, x∗(t), v(t)), yδ(t)− x(t))dt + o3(δ)

+
∫

Cδ

(L(t, x∗(t), v(t))− L(t, x∗(t), u∗(t)))dt.

By virtue of the choice of Cδ we have
∫

Cδ

(L(t, x∗(t), v(t))− L(t, x∗(t), u∗(t)))dt

≤
∫ b

0
(L(t, x∗(t), v(t))− L(t, x∗(t), u∗(t)))dt + o4(δ).
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So we can write that∫

Cδ

(L(t, yδ, v(t))− L(t, x∗(t), u∗(t)))dt ≤

≤
∫

Cδ

(L
′
x(t, x∗(t), v(t)), yδ(t)− x∗(t))dt

+ δ

∫ b

0
(L(t, x∗(t), v(t))− L(t, x∗(t), u∗(t))dt + 04(δ).

(20)

Using (19) and (20) in (18), we obtain

0 ≤
∫

T
(L

′
x(t, x∗(t), u∗(t)), yδ(t)− x∗(t))dt

+ δ

∫

Cδ

(L1
x(t, x∗(t), v(t)), yδ(t)− x∗(t))dt

+ δ

∫ b

0
(L(t, x∗(t), v(t))− L(t, x∗(t), u∗(t)))dt + o5(δ).

Divide by δ > 0 and let δ ↓ 0. Recall that wδ = 1
δ (y∗ − x∗) w→ z in Wpq(T )

as δ ↓ 0 and that
∫

Cδ

(L
′
x(t, x∗(t), v(t)), yδ(t)− x∗(t))dt

≤ ||yδ − x∗||∞
∫
Cδ
||L′x(t, x∗(t), v(t))||Ldt → 0 as δ ↓ 0.

So in the limit we have

0 ≤
∫ b

0
(L

′
x(t, x∗(t), u∗(t)), z(t))dt

+
∫ b

0
(L(t, x∗(t), v(t))− L(t, x∗(t), u∗(t))dt for all v ∈ Sq

U .

Using (17), it follows that

0 ≤
∫ b

0
(ϕ(t), B(t)(v(t)− u∗(t))dt

+
∫ b

0
(L(t, x∗(t), v(t))− L(t, x∗(t), u∗(t))dt for all v ∈ Sq

U .

Let {uk}k≥1 be dense in U and let

σk(s) = (ϕ(s), B(s)(vk − u∗(s)))

+ L(s, x∗(s), vk)− L(s, x∗(s), u∗(s)) for all k ≥ 1.
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Then σk ∈ L1(T ) and let Dk the set of Lebesque points of σk(·). From
Lebesgue’s theorem (see for example Oxtoby [23]), we know that |Dk| = |T |
for all k ≥ 1. Fix k ≥ 1 and tεDk and then for any given > 0 define

v(s) =

{
u∗(s) if |s− t| > ε

vk if |s− t| ≤ ε.

Evidently v ∈ Sq
U and we have

0 ≤
∫ t+ε

t−ε
σk(s)ds.

Divide by ε > 0 and let ε ↓ 0. We obtain

0 ≤ σk(t) = (ϕ(t), B(t)(vk − u∗(t)))

+ (L(t, x∗(t), vk)− L(t, x∗(t), u∗(t))) for all t ∈ Dk, k ≥ 1.

Since {vk}k≥1 is dense in U , we conclude that

0 ≤ (ϕ(t), B(t)(uk−u∗(t)))+L(t, x∗(t), uk)−L(t, x∗(t), u∗(t)) for all u ∈ U.

This proves conclusion (c) of the theorem.
Next let λ ∈ SΣ and set λε = λ∗ + (λ− λ∗) and xε = x(u∗, λ). We have

ẋε(t)− ẋ(t) + A(t, xε(t))−A(t, x∗(t)) =
∫

V
f(t, xε(t), v)λε(t)(dv)

−
∫

V
f(t, x∗(t), v)λ∗(t)(dv) a.e. on T.

Arguing as in the first part of the proof, we can have that

xε → x∗ in C(T, H) and xε → x∗ in Lp(T, H) as ε ↓ 0.

Exploiting the Frechet differentiability of A(t, ·) and f(t, ·, v), we obtain

A(t, xε(t))−A(t, x∗(t)) = A
′
x(t, x∗(t))(xε(t)− x∗(t)) + o1(t, ε)

a.e on T with o1(·, ε) ∈ Lq(T,X∗) and
∫

V
f(t, xε(t), v)λε(t)(dv)−

∫

V
f(t, x∗(t), v)λ∗(t)(dv)

=
∫

V
f
′
x(t, x∗(t), v)(xε(t)− x∗(t))λε(t)(dv)

+
∫

V
f(t, x∗(t), v)(λε(t)− λ∗(t))(dv) + o2(t, ε) a.e. on T
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with o2(·, ε) ∈ Lq(T, H). If we set yε = 1
ε (xε − x∗), we have

ẏε(t) + A(t, x∗(t)) =
∫

V
f
′
x(t, x∗(t), v)yε(t)λε(t)(dv)

+
∫

V
f(t, x∗(t), v)(λ(t)− λ∗(t))(dv) + o(t, ε) a.e. on T

with o(·, ε) ∈ Lq(T, H). As before we have that yδ → y in Wpq(T ) as δ ↓ 0,
with y ∈ Wpq(T ) being the unique solution to this Cauchy problem:

ẏ(t) + A
′
x(t, x∗(t))y(t) =

∫

V
f
′
x(t, x∗(t), v)y(t)λ∗(t)(dv)

+
∫

V
f(t, x∗(t), v)(λ(t)− λ∗(t))(dv) a.e. on T

y(0) = 0.

Using the adjoint state ϕ ∈ Wpq(T ), as in the first part of the proof, we
obtain

∫ b

0
(ϕ(t),

∫

V
f(t, x∗(t), v)(λ(t)− λ∗(t)(dv))dt = (L̂

′
x(x∗, u∗), y)pq.(21)

Using the first inequality in (15), we obtain

∫ b

0
(ϕ(t),

∫

V
f(t, x∗(t), v)(λ(t)− λ∗(t)(dv))dt ≤ 0 for all λ ∈ SΣ.

Let λk : T → M1
+(V ) be Lebesgue measurable maps such that Σ(t) =

{λk(t)}k≥1 for all t ∈ T (see Hu-Papageorgiou [19], Theorem 2.4, p. 156).
Set

θk(t) = (ϕ(t),
∫

V
f(t, x∗(t), v)(λk(t)− λ∗(t))(dv)) k ≥ 1.

Let Ek be the set of Lebesgue points of θk. Recall that |Ek| = |T |, k ≥ 1.
Fix k ≥ 1 and let t ∈ Ek. Define

λ(s) =

{
λ∗(s) if |s− t| > r

λk(s) if |s− t| ≤ r, r > 0.



42 N.S. Papageorgiou and N. Yannakakis

Evidently λ ∈ SΣ and we have
∫ b

0
(ϕ(s),

∫

V
f(s, x∗(s), v)(λ(s)− λ∗(s))(dv)ds =

∫ t+r

t−r
θk(s)ds ≤ 0

⇒ 1
r

∫ t+r

t−r
θk(s)ds ≤

⇒ θk(t) ≤ 0 for all t ∈ Ek, k ≥ 1.

If we set E = ∩Ek, we have |E| = |T | and for t ∈ E we obtain

(ϕ(t),
∫

V
f(t, x∗(t), v)(λ(t)− λ∗(t))(dv)) ≤ 0 for all k ≥ 1

⇒ (ϕ(t),
∫

V
f(t, x∗(t), v)(λ− λ∗(t))(dv)) ≤ 0 a.e. on T for all λ ∈ Σ(t).

So we have proved conclusion (b) of the theorem. This concludes the proof
of the theorem.

6. Examples

In this section, we present parabolic distributed parameter control systems
where our abstract results can be applied.

So let T = [0, b] and let Z ⊆ IRn be a bounded domain with C1-
boundary. We consider the following optimal control problem:





∫ b

0

∫

Z
L(t, z, x(t, z), u(t, z))dzdt + ϕ̂(||x(b, ·)||2) → inf = β

s.t.
∂x

∂t
−

N∑

k=1

Dkak(t, z, x,Dx) + a0(t, z, x, Dx)

= f(t, z, x(t, z))u(t, z) a.e. on T × Z

x|T×Γ = 0, x(0, z) = x0(z) a.e. on Z,

|u(t, z)| ≤ r(t, z) a.e. on T × Z





(22)

The hypotheses on the data of (22) are the following:

H(a) : ak : T ×Z × IR× IRN → IR, k ∈ {1, 2, ..., N} are functions such that

(i) for all (x, η) ∈ IR× IRN , (t, z) → ak(t, z, x, η) is measurable;
(ii) for almost all (t, z) ∈ T × Z, (x, η) → ak(t, z, x, η) is continuous;
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(iii) for almost all (t, z) ∈ T × Z and all x ∈ IR, η ∈ IRN , we have that

|ak(t, z, x, η)| ≤ β1(t, z) + c1(|x|p−1 + ||η||p−1)

with β1 ∈ Lq(T × Z), c1 > 0, 2 ≤ p < ∞, 1
p + 1

q = 1;

(iv) for almost all (t, z) ∈ T × Z, all x ∈ IR and all η, η′ ∈ IRN , η 6= η′, we
have

N∑

k=1

(ak(t, z, x, η)− ak(t, z, x, η′))(η − η
′
) > 0;

(v) for almost all (t, z) ∈ T × Z, all x ∈ IR and all η ∈ IRN we have

N∑

k=1

ak(t, z, x, η) ≥ c2||η||p − θ(t)

with ∈ L1(T ), c2 > 0.

H(a0) : a0 : T × Z × IR× IRN → IR is a function such that

(i) for all x ∈ IR, η ∈ IRn, (t, z) → a0(t, z, x, η) is measurable;
(ii) for almost all (t, z)εT × Z, (x, η) → a0(t, z, x, η) is continuous;
(iii) for almost all (t, z) ∈ T × Z, all x ∈ IR and all η ∈ IRN we have

|a0(t, z, x, η)| ≤ β2(t, z) + c2(|x|p−1 + ||η||p−1)

with β2 ∈ Lq(T × Z), c2 > 0.

H(L)3 : L : T × Z × IR× IR → IR = IR ∪ {+∞} is an integrand such that

(i) (t, z, x, u) → L(t, z, x, u) is measurable;
(ii) for all t ∈ T and almost all z ∈ Z, (x, u) → L(t, z, x, u) is lower

semicontinuous;
(iii) for almost all (t, z) ∈ T × Z and all x, u ∈ IR we have

ψ(t, z)− c1(z)(|x|+ |u|) ≤ L(t, z, x, u)

with ψ ∈ L1(T × Z) and c1 ∈ L∞(Z).

H(f)3 : f : T × Z × IR → IR is a function such that
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(i) for all x ∈ IR, (t, z) → f(t, z, x) is measurable;
(ii) for almost all (t, z) ∈ T × Z, x → f(t, z, x) is continuous;
(iii) for almost all (t, z) and all x ∈ IR, |f(t, z, x)| ≤ β3(t, z) with β3 ∈

Lq(T, L2(Z)).

H(r) : r ∈ L∞(T, L2(Z)).

H(ϕ̂) : ϕ̂ : IR → IR is lower semicontinuous.

Proposition 7. If hypotheses H(a),H(a0),H(L)3,H(f)3,H(r),H(ϕ̂) hold
and x0 ∈ L2(Z), then problem (22) admits a solution [x∗, u∗] ∈ (C(T,L2(Z))
∩ Lp(T, W 1,p

0 (Z))× (L2(T × Z) and ∂x∗
∂t ∈ Lq(T, W−1,q(Z)).

Proof. In this case the evolution triple is X = W 1,p
0 (Z), H = L2(Z), X∗ =

W−1,q(Z). The embeddings are compact. Let A : T × T → X∗ be defined
by

< A(t, x), y > =
∫

Z

N∑

k=1

ak(t, z, x, Dx)Dkydz +
∫

Z
a0(t, z, x, Dx)y(z)dz.

Hypotheses H(a) and H(a0) imply that H(A)1 holds. In particular, the
pseudomonotonicity of the operator A(t, ·) follows from the result of Gossez-
Mustonen [15]. Let Y = L2(Z) = H and set U(t) = {uεY : ||u||2 ≤ r̂(t)}
with r̂(t) = ||r(t, ·)||2 ∈ L∞(T ) (see hypothesis H(r)). So we see that H(U)1
holds.

Next let f̂ : T ×H → L(Y, H) = L(H) be defined by

f̂(t, x)u(·) = f(t, ·, x(·))u(·).

By virtue of hypothesis H(f)3, we see that hypothesis H(f)1 holds.
Finally, let L̂ : T ×H×Y → IR = IR∪{+∞} and ϕ : H → IR be defined

by

L̂(t, x, u) =
∫

Z
L(t, z, x(z), u(z))dz and ϕ(x) = ϕ̂(||x||).

Using hypothesis H(L)3 and H(ϕ̂), we can easily check that hypotheses
H(L) and H(ϕ) hold. So we can apply Theorem 4 and produce an optimal
pair (x∗, u∗) ∈ (C(T, L2(Z) ∩ Lp(T, W 1,p

0 (Z))× L2(T × Z) for problem (22)
and ∂x∗

∂t ∈ Lq(T,W−1,q(Z)).
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Next consider the following parabolic distributed parameter control system.
Here V is a compact subset of the Euclidean space IRm,m ≥ 1.





∂x

∂t
− diva(t, z, Dx)

=
∫

V
g(t, z, v)λ(t)(dv)x(t, z) + β1(t, z)u(t, z) a.e on T × Z

x|Tx = 0, (0, z) = x0(z) a.e on Z,

|u(t, z)| ≤ r(z) a.e on Z, λ ∈ SΣ





(23)

Also we are given the integral cost function

J(u, λ) =
∫ b

0

∫

Z
L̂(t, z, x(u, λ)(t, z), u(t, z))dzdt.

We consider the minimax control problem

inf
u

sup
λ

[J(u, λ) : u ∈ Lq(T × Z), |u(t, z)| ≤ r(z) a.e on Z, λ ∈ SΣ] = β.

(24)
We assume that (x∗, u∗) is a saddle point optimal pair for the minimax
control problem 24. We make the following hypotheses:

H(a)1 : a : T × Z × IRN → IRN is a function such that

(i) for all η ∈ IRN , (t, z) → a(t, z, η) is measurable;
(ii) for almost all (t, z) ∈ T × Z, η → a(t, z, η) is a C1-function and

a
′
η(·, ·, x∗(·, ·)) ∈ Lq(T × Z, IRN );

(iii) for almost all (t, z) ∈ T × Z and all η ∈ IRN we have

||a(t, z, )|| ≤ a1(t, z) + c1||η||p−1 with a1 ∈ Lq(T × Z) and c1 > 0;

(iv) for almost all t ∈ T , almost all z ∈ Z and all η, η′ ∈ IRN we have

(a(t, z, η)− a(t, z, η′), η − η′)IRN ≥ c||η − η′||p;

and a(t, z, 0) = 0.

H(g) : g : T × Z × V → IR is a function such that
(i) for all v ∈ V, (t, z) → g(t, z, v) is measurable;
(ii) for all t ∈ T and almost all z ∈ Z, v → g(t, z, v) is continuous;
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(iii) for almost all (t, z) ∈ T ×Z and all v ∈ V we have |g(t, z, v)| ≤ a2(t, z)
with a2 ∈ Lq(T × Z).

H1 : r ∈ L∞(Z) and β ∈ L∞(T × Z);

H(L)4 : L̂ : T × Z × IR× IR → IR is an integral such that

(i) for all (x, u) ∈ IR× IR, (t, z) → L̂(t, z, x, u) is measurable ;
(ii) for almost all (t, z) ∈ T × Z, (x, u) → L̂(t, z, x, u) is continuous;
(iii) for all t ∈ T , almost all z ∈ Z and all u ∈ IR, x → L̂(t, z, x, u) is C1 and

L̂
′
x(·, ·, x∗(·, ·), u∗(·, ·)) ∈ L1(T, L2(Z)).

Again the evolution triple is X = W 1,p
0 (Z), H = L2(Z), X∗ = W−1,q(Z).

Set f(t, x, v)(·) = g(t, ·, x(·), v) ∈ H for all x ∈ H, Y = L2(Z) = H, U(t) =
{u ∈ Y : ||u||2 ≤ ||r||∞}, B(t)u(·) = β(t, ·)u(·) ∈ H for all u ∈ Y and
L(t, x, u) =

∫
Z L̂(t, z, x(z), u(z))dz for all t ∈ T and all x, u ∈ H = Y .

Then we can easily verify that hypotheses H(A)2,H(f)3, H(B),H(L)3 hold.
Assume also H(Σ). So we can apply Theorem 5 and obtain:

Proposition 8. If hypotheses H(a)1,H(g),H1,H(Σ),H(L)4 hold and (u∗, λ∗)
is a saddle point for the cost functional J(u, λ) then there exists
ϕ ∈ C(T, H) ∩ Lp(T, W 1,p

0 (Z)) with ∂ϕ
∂t ∈ Lq(T,W−1,q(Z)) such that:

(a) −∂ϕ
∂t − div(a

′
x(t, z, Dx∗(z))ϕ(t, z) − ∫

V g
′
x(t, z, v)λ∗(t)(dv)x(t, z)

= L̂
′
x(t, z, x∗(t, z), u∗(t, z)) a.e. on T × Z ϕ|T×Γ = 0, ϕ(b, z) = 0

a.e on Z;
(b)

∫
Z ϕ(t, z)

∫
V g(t, z, v)(λ − λ∗(t))(dv)x∗(t, z)dz ≤ 0 a.e on T for all

λ ∈ Σ(t);
(c)

∫
Z(L̂(t, z, x∗(t, z), u(z))− L̂(t, z, x∗(t, z), u∗(t, z))dz

+
∫
Z β(t, z)ϕ(t, z)(u(z)− u∗(t, z))dz ≥ 0 a.e on T for all u ∈ U .

We can also deal with higher order systems. So consider




∂x

∂t
−

∑

|α|≤m

(−1)|α|DαAα(t, z, η(x), θ(x))

= f(t, z, η(x))u(t, z) a.e. on T × Z

x|T×Γ = 0, x(0, z) = x0(z) a.e. on Z,

|u(t, z)| ≤ r(t, z) a.e. on Z





(25)
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Here α = (αk)N
k=1,k is a nonnegative integer, |α| =

∑N
k=1 αk (the length of

the multi-index) Dα = Dα1
1 ...DαN

N with Dk = ∂
∂zk

, η(x) = {Dα
x : |α| ≤ m−1}

and θ(x) = {Dα
x : |α| = m}. We make the following hypotheses:

H(a)2 : Aα : T × Z × IRNm−1 × IRN̂m → IR
(Nm−1 = (N+m−1)!

N !(m−1)! , Nm = (N+m)!
N !m! , N̂m = Nm −Nm−1) are such that

(i) for all η ∈ IRNm−1 and θ ∈ IRN̂m , (t, z) → Aα(t, z, η, θ) is measurable;
(ii) for almost all (t, z) ∈ T × Z, (η, θ) → Aα(t, z, η, θ) is continuous;

(iii) for almost all (t, z) ∈ T × Z, all η ∈ IRNm−1 and all θ ∈ IRN̂m we have

|Aα(t, z, η, θ)| ≤ β1(t, z) + c1(||η||p−1 + ||θ||p−1)

with β1 ∈ Lq(T × Z), c1 > 0;
(iv) for almost all (t, z) ∈ T ×Z, all η ∈ IRNm−1 and all θ, θ′ ∈ <Nm , θ 6= θ′,

we have
∑

|α|=m

(Aα(t, z, η, θ)−Aα(t, z, η, θ′))(θα − θ′α) > 0;

(v) for almost all (t, z) ∈ T × Z and all η ∈ IRNm−1 , θ ∈ IRN̂m we have
∑

|α|≤m

Aα(t, z, η, θ)θα ≥ c2||θ||p − γ(t, z)

with γ ∈ L1(T × Z), c2 > 0.

H(f)4 : f : T × Z × IRNm−1 → IR is a function such that

(i) for all η ∈ IRNm−1 (t, z) → f(t, z, η) is measurable;
(ii) for all t ∈ T and almost all z ∈ Z, η → f(t, z, η) is continuous;
(iii) for almost all (t, z) ∈ T × Z and all η ∈ IRNm−1 we have

f(t, z, η)| ≤ β2(t, z) + c2||η||p−1 with β2 ∈ Lq(T × Z), c2 > 0

and

f(t, z, η0, η
′)η0 ≤ γ1 for some γ1 > 0, with η = (η0, η

′), η0 ∈ IR.
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In this case the evolution triple is X = Wm,p
0 (Z), H = L2(Z) and

X∗ = W−m,q(Z). Again all embeddings are compact (Sobolev embedding
theorem). The operator A : T ×X → X∗ is defined by

< A(t, x), y >=
∫

Z

∑

|α|≤m

Aα(t, z, η(x), θ(x))Dαy(z)dz, x, y ∈ W 1,p
0 (Z).

The pseudomonotonicity of A(t, ·) follows from Browder [7]. Also we intro-
duce f̂ : T×X → H defined by f̂(t, x)(·) = f(t, ·, η(x)(·)). Using Proposition
6 we obtain the following result:

Proposition 9. If hypotheses H(a)2,H(f)4 hold, r ∈ L∞(T ×Z) and x0 ∈
L2(Z) then the set of all admissible solutions of (25) is weakly compact in
Wpq(T ) and compact in C(T, L2(Z)).

Remark. A similar system has been studied by Ahmed-Xiang [1]. The
authors claim that it can be analyzed using their results. However, this
claim is inaccurate. Hypothesis (A8) (iv) in that paper (monotonicity only
on the higher order terms; compare with H(a)2 (iv)), does not imply the
monotonicity of A(t, ·). In Ahmed-Xiang [1], it is assumed that A(t, ·) is
monotone. So the example of Ahmed-Xiang should be modified and assume
that Aα depends only on Dmx and not on (x, Dx, Dmx).
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