PARTITION PROBLEMS AND KERNELS OF GRAPHS

IZAK BROERE
Department of Mathematics, Rand Afrikaans University
P.O. Box 524, Auckland Park, 2006 South Africa
email: ib@rau3.rau.ac.za

PÉTER HAJNAL*
Bolyai Intézet, University of Szeged
Aradi Vértanúk tere 1., Szeged, Hungary 6720
email: hajnal@inf.u-szeged.hu

PETER MIHÓK
Mathematical Institute, Slovak Academy of Sciences
Grešákova 6, 040 01 Košice
email: mihok@kosice.upjs.sk

1. Introduction

The graphs we consider are finite, simple and undirected. The number of vertices in a longest path in a graph \(G \) is denoted by \(\tau(G) \). For positive integers \(k_1 \) and \(k_2 \) a graph \(G \) is \((\tau, k_1, k_2)\)-partitionable if there exists a partition \(\{V_1, V_2\} \) of \(V(G) \) such that \(\tau(G[V_1]) \leq k_1 \) and \(\tau(G[V_2]) \leq k_2 \). If this can be done for every pair of positive integers \((k_1, k_2)\) satisfying \(k_1 + k_2 = \tau(G) \), we say that \(G \) is \(\tau \)-partitionable.

Let \(H_v \) denote the fact that the graph \(H \) is rooted at \(v \). The set \(S \subseteq V(G) \) is an \(H_v \)-kernel if

(i) there is no subgraph of \(G[S] \) isomorphic to \(H \) and
(ii) for every \(x \in V(G) - S \) there is a subgraph of \(G[S \cup \{x\}] \) isomorphic to \(H_v \) with its root \(v \) at \(x \).

*Partially supported by OTKA T016349 and F021271.
Similarly, a graph is H_v-saturated if it has a subset $S \subseteq V(G)$ such that
(i) H is not a subgraph of $G[S]$ and
(ii) for every $x \in V(G) - S$ which is adjacent to some vertex of S the graph H is a subgraph of $G[S \cup \{x\}]$ with its root v at x.
A graph G is called decomposable if it is the join of two graphs.

2. The problems

We start with a problem which is formulated as a conjecture in [3] and [1] (see also in [2]).

Conjecture 1. Every graph is τ-partitionable.

In [1] it is shown amongst others that every decomposable graph is τ-partitionable.

For a given (rooted) graph H_v, the question whether every graph G has an H_v-kernel is discussed in [2], [4] and [5]. It is shown amongst others that
(a) Every graph has an H_v-kernel if and only if every graph is H_v-saturated.
(b) Every graph has a P_v-kernel where P_v is a path of order at most six and v is an endvertex of P.
(c) Every graph has an S_v-kernel where S_v is a star and v is the center of the star or v is an endvertex of the star.

Clearly, if H_v is a vertex transitive graph, then every graph has an H_v-kernel (any maximal set of vertices inducing an H_v-free graph is an H_v-kernel). The fact that there are graphs H_v and G for which G has no H_v-kernel is illustrated in [2] and [4]. The general problem therefore is

Problem. Describe the rooted graphs H_v for which every graph G has an H_v-kernel.

Let the path P_v of order n be rooted at an endvertex. If every graph G has a P_v-kernel for every n then Conjecture 1 is true: If $\tau(G) = k_1 + k_2$, let V_1 be a Q_v-kernel where Q_v is a path (rooted at an endvertex) of order $k_1 + 1$ and let $V_2 = V(G) - S$. From (b) we immediately obtain that every graph is (τ, k_1, k_2)-partitionable if $\min\{k_1, k_2\} \leq 5$.

We are inclined to think that the following conjecture is also true for every path P_v rooted at an endvertex v.

Conjecture 2. Every graph has a P_v-kernel.
References

Received 17 September 1997