
Discussiones Mathematicae
General Algebra and Applications 41 (2021) 55–68
doi:10.7151/dmgaa.1348

ON BALANCING QUATERNIONS AND

LUCAS-BALANCING QUATERNIONS

Dorota Bród
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Abstract

In this paper we define and study balancing quaternions and Lucas-
balancing quaternions. We give the generating functions, matrix generators
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1. Balancing and Lucas-balancing numbers

A. Behera and G. K. Panda in [1] introduced a number sequence {Bn}, called
balancing sequence, defined in the following way: a positive integer n is called a
balancing number with balancer r, if it is the solution of the Diophantine equation

1 + 2 + · · · + (n − 1) = (n + 1) + (n + 2) + · · · + (n + r).

For example 6 and 35 are balancing numbers with balancers 2, 14, respectively.
Moreover, the authors proved that the recurrence relation for the balancing num-
bers has the following form

Bn+1 = 6Bn −Bn−1 for n ≥ 1(1)

with initial conditions B0 = 0, B1 = 1.
The first eight terms of the sequence are 0, 1, 6, 35, 204, 1189, 6930, 40391. This

sequence is also given by Binet formula

Bn =
rn1 − rn2
r1 − r2

,(2)
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where r1, r2 are the roots of the characteristic equation r2−6r+1 = 0, associated
with the recurrence relation (1), i.e.,

r1 = 3 + 2
√

2, r2 = 3 − 2
√

2.(3)

Note that

r1 + r2 = 6,

r1 − r2 = 4
√

2,
r1r2 = 1.

(4)

It is well known that n is a balancing number if and only if n2 is a triangular
number, i.e., 8n2 + 1 is a perfect square, see [1]. In [6] the author introduced
Lucas-balancing numbers, defined as follows. If n is a balancing number, Cn =√

8n2 + 1 is called a Lucas-balancing number. The sequence {Cn} of Lucas-
balancing numbers is defined by the recurrence of second order

Cn+1 = 6Cn − Cn−1 for n ≥ 1(5)

with initial terms C0 = 1, C1 = 3. The Binet formula for Lucas-balancing
numbers has the form

Cn =
rn1 + rn2

2
,(6)

where r1, r2 are given by (3).
The first eight terms of the sequence are 1, 3, 17, 99, 577, 3363, 19601, 114243.
Many interesting properties of these numbers are given in [1, 2, 6, 7, 9].

Among others, the well-known are

Bm+n = BmCn + CmBn

Bm−n = BmCn − CmBn

C2
n = 8B2

n + 1
C2n = 16B2

n + 1
Bn−rBn+r −B2

n = −B2
r (Catalan identity)

Cn−rCn+r − C2
n = C2

r − 1 (Catalan identity)
Bn−1Bn+1 −B2

n = −1 (Cassini identity)
Cn−1Cn+1 − C2

n = 8 (Cassini identity)
BmBn+1 −Bm+1Bn = Bm−n (d′Ocagne identity)
CmCn+1 − Cm+1Cn = −8Bm−n (d′Ocagne identity).

In this paper we will use the following identities:

(7)
n
∑

l=0

Bl =
Bn+1 −Bn − 1

4
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(8)
n
∑

l=0

Cl =
Cn+1 − Cn + 2

4

(9) 3Bn −Bn−1 = Cn

(10) Bn+2 −Bn−2 = 12Cn.

2. The balancing quaternions and Lucas-balancing quaternions

A quaternion q is a hyper-complex number represented by an equation

q = a + bi + cj + dk,

where a, b, c, d are real numbers and i, j, k are standard orthonormal basis in R
3,

which satisfy the quaternion multiplication rules presented in Table 1.

Table 1. The quaternion multiplication.

· i j k

i −1 k −j

j −k −1 i

k j −i −1

The conjugate of a quaternion is given by q = a − bi − cj − dk, the norm of a
quaternion is N(q) = q ·q = q ·q = a2 +b2 +c2 +d2. For the basics on quaternions
theory, see [13].

The quaternions were introduced by Hamilton in 1843. The quaternions
of sequences firstly were considered in 1963 by Horadam [4]. He introduced
Fibonacci and Lucas quaternions by the equations

FQn = Fn + iFn+1 + jFn+2 + kFn+3,

LQn = Ln + iLn+1 + jLn+2 + kLn+3,

where Fn, Ln denotes the nth Fibonacci number and nth Lucas number, respec-
tively, defined by the recurrences

Fn = Fn−1 + Fn−2, n ≥ 2, F0 = 0, F1 = 1,

Ln = Ln−1 + Ln−2, n ≥ 2, L0 = 2, L1 = 1.

The quaternions of the well-known sequences have been investigated by several
authors. For example, in [11] the Jacobsthal quaternions were introduced, in
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[3, 12] the Pell and Pell-Lucas quaternions were considered. In [5, 8] many in-
teresting identities of (p, q)-Fibonacci quaternions and (p, q)-Lucas quaternions
were established.

We introduce balancing quaternions and Lucas-balancing quaternions and
derive some identities such as Binet formulas, Catalan identities, d’Ocagne iden-
tities for both these quaternions.

Let n ≥ 0. The balancing quaternion sequence {BQn} we define by the
following recurrence

BQn = Bn + iBn+1 + jBn+2 + kBn+3,(11)

where Bn denotes the n-th balancing number. In the same way we can define the
Lucas-balancing quaternion sequence {CQn}

CQn = Cn + iCn+1 + jCn+2 + kCn+3,(12)

where Cn is defined by (5).
Using the above equalities we get

BQ0 = i + 6j + 35k
BQ1 = 1 + 6i + 35j + 204k
BQ2 = 6 + 35i + 204j + 1189k
BQ3 = 35 + 204i + 1189j + 6930k

...

(13)

CQ0 = 1 + 3i + 17j + 99k
CQ1 = 3 + 17i + 99j + 577k
CQ2 = 17 + 99i + 577j + 3363k
CQ3 = 99 + 577i + 3363j + 19601k

...

(14)

The next theorems present some basic properties of the balancing and Lucas-
balancing quaternions.

Theorem 1. Let n ≥ 2 be an integer. Then

(i) BQn = 6BQn−1 −BQn−2,

(ii) CQn = 6CQn−1 −CQn−2,

where BQ0, BQ1, CQ0, CQ1 are given in (13), (14), respectively.

Proof. By formula (11) and (1) we get

6BQn−1 −BQn−2

= 6(Bn−1 + iBn + jBn+1 + kBn+2) − (Bn−2 + iBn−1 + jBn + kBn+1)

= 6Bn−1 −Bn−2 + i(6Bn −Bn−1) + j(6Bn+1 −Bn) + k(6Bn+2 −Bn+1)

= Bn + iBn+1 + jBn+2 + kBn+3 = BQn,
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which ends the proof of (i).

The second part can be proved similarly using (12) and (5).

Theorem 2. Let n ≥ 1 be an integer. Then

3BQn −BQn−1 = CQn.

Proof. Using (11) and (9), we have

3BQn −BQn−1 = 3(Bn + iBn+1 + jBn+2 + kBn+3)

− Bn−1 − iBn − jBn+1 − kBn+2

= 3Bn −Bn−1 + i(3Bn+1 −Bn)

+ j(3Bn+2 −Bn+1) + k(3Bn+3 −Bn+2)

= Cn + iCn+1 + jCn+2 + kCn+3 = CQn.

Corollary 3. Let n ≥ 0 be an integer. Then

BQn+1 − 3BQn = CQn.

Theorem 4. Let n ≥ 2 be an integer. Then

BQn+2 −BQn−2 = 12CQn.

Proof. By (11) and (10) we have

BQn+2 −BQn−2 = Bn+2 + iBn+3 + jBn+4 + kBn+5

− Bn−2 − iBn−1 − jBn − kBn+1

= Bn+2 −Bn−2 + i(Bn+3 −Bn−1)

+ j(Bn+4 −Bn) + k(Bn+5 −Bn+1)

= 12(Cn + iCn+1 + jCn+2 + kCn+3) = 12CQn.

Theorem 5. Let n ≥ 0 be an integer. Then

(i) BQn + BQn = 2Bn,

(ii) CQn + CQn = 2Cn,

(iii) N(BQn) = 2BnBQn −BQ2
n,

(iv) N(CQn) = 2CnCQn − CQ2
n.

Proof. (i) Using the definition of the conjugate of a quaternion we obtain the
result.
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(iii) By formula (11) we have

BQ2
n = B2

n −B2
n+1 −B2

n+2 −B2
n+3 + 2iBnBn+1 + 2jBnBn+2 + 2kBnBn+3

+ (ij + ji)Bn+1Bn+2 + (ik + ki)Bn+1Bn+3 + (jk + kj)Bn+2Bn+3

= B2
n −B2

n+1 −B2
n+2 −B2

n+3 + 2(iBnBn+1 + jBnBn+2 + kBnBn+3)

= 2Bn(Bn + iBn+1 + jBn+2 + kBn+3) − B2
n −B2

n+1 −B2
n+2 −B2

n+3

= 2BnBQn −N(BQn).

Hence we get the result.

The equalities (ii) and (iv) can be done similarly.

The next theorem gives the Binet formulas for the balancing and Lucas-
balancing quaternions.

Theorem 6. Let n ≥ 0 be an integer. Binet formulas for BQn and CQn, re-

spectively, have the following form

(15) BQn =
r̂1r

n
1 − r̂2r

n
2

r1 − r2
,

(16) CQn =
r̂1r

n
1 + r̂2r

n
2

2
,

where

r1 = 3 + 2
√

2, r2 = 3 − 2
√

2,

(17) r̂1 = 1 + ir1 + jr21 + kr31,

(18) r̂2 = 1 + ir2 + jr22 + kr32.

Proof. By formula (2) we get

BQn = Bn + iBn+1 + jBn+2 + kBn+3

=
1

r1 − r2

[

rn1 − rn2 + i
(

rn+1
1

− rn+1
2

)

+ j
(

rn+2
1

− rn+2
2

)

+ k
(

rn+3
1

− rn+3
2

)]

=
1

r1 − r2

[

rn1
(

1 + ir1 + jr21 + kr31
)

− rn2
(

1 + ir2 + jr22 + kr32
)]

=
r̂1r

n
1 − r̂2r

n
2

r1 − r2
.

The proof for the Lucas-balancing quaternions is similar.
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3. Catalan, Cassini and d’Ocagne identities for the balancing

quaternions and Lucas-balancing quaternions

Now we will give some identities for the balancing quaternions and Lucas-balan-
cing quaternions, these identities are easily proved using the Binet formulas (15)
and (16). Using (17), (18) and (4) we get

(19)
r̂1r̂2 = −2 + (6 − 4

√
2)i + (34 + 24

√
2)j + (198 − 4

√
2)k,

r̂2r̂1 = −2 + (6 + 4
√

2)i + (34 − 24
√

2)j + (198 + 4
√

2)k.

Note that

(20)
r̂1r̂2 + r̂2r̂1 = −4 + 12i + 68j + 396k

= −4(1 − 3i− 17j − 99k) = −4CQ0.

Theorem 7 (Catalan identity). Let n ≥ 0, r ≥ 0 be integers such that n ≥ r.

Then

BQn−rBQn+r −BQ2
n =

(rr1 − rr2)(r̂1r̂2r
r
2 − r̂2r̂1r

r
1)

32
.

Proof. By formula (15) we get

BQn−rBQn+r −BQ2
n

=

(

r̂1r
n−r

1
− r̂2r

n−r

2

) (

r̂1r
n+r

1
− r̂2r

n+r

2

)

− (r̂1r
n
1 − r̂2r

n
2 )2

(r1 − r2)
2

=
1

32

[

r̂1r̂2 (rn1 r
n

2 )

(

1 −
(

r2

r1

)r)

+ r̂2r̂1 (rn1 r
n

2 )

(

1 −
(

r1

r2

)r)]

.

By simple calculations, using (4), we have

BQn−rBQn+r −BQ2
n =

1

32

(

r̂1r̂2
rr1 − rr2

rr
1

+ r̂2r̂1
rr2 − rr1

rr
2

)

=
r̂1r̂2 (rr1 − rr2) rr2 − r̂2r̂1 (rr1 − rr2) rr1

32

=
(rr1 − rr2) (r̂1r̂2r

r
2 − r̂2r̂1r

r
1)

32
.

Note that for r = 1 we have the Cassini identity for the balancing quaternions.

Corollary 8. For n ≥ 1

BQn−1BQn+1 −BQ2
n =

r̂1r̂2r2 − r̂2r̂1r1

4
√

2
.
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In the same way, using formula (16), one can easily prove the following result.

Theorem 9 (Catalan identity). Let n ≥ 0, r ≥ 0 be integers such that n ≥ r.

Then

CQn−rCQn+r −CQ2
n =

(rr2 − rr1)(r̂1r̂2r
r
2 − r̂2r̂1r

r
1)

4
.

Corollary 10. For n ≥ 1

CQn−1CQn+1 − CQ2
n = −

√
2(r̂1r̂2r2 − r̂2r̂1r1).

Theorem 11 (d’Ocagne identity). Let m ≥ 0, n ≥ 0 be integers such that m ≥ n.

Then

BQmBQn+1 −BQm+1BQn =
r̂1r̂2r

m−n

1
− r̂2r̂1r

m−n

2

4
√

2
.

Proof. By formula (15) and (2) we get

BQmBQn+1 −BQm+1BQn

=
(r̂1r

m
1 − r̂2r

m
2 )(r̂1r

n+1
1

− r̂2r
n+1
2

) − (r̂1r
m+1
1

− r̂2r
m+1
2

)(r̂1r
n
1 − r̂2r

n
2 )

(r1 − r2)2

=
1

(r1 − r2)2
[r̂1r̂2(rm+1

1
rn2 − rm1 rn+1

2
) + r̂2r̂1(r

n

1 r
m+1

2
− rn+1

1
rm2 )]

=
1

(r1 − r2)2
(r1r2)n[r̂1r̂2(r1 − r2)rm−n

1
+ r̂2r̂1(r2 − r1)r

m−n

2
]

=
r̂1r̂2r

m−n

1
− r̂2r̂1r

m−n

2

r1 − r2
=

r̂1r̂2r
m−n

1
− r̂2r̂1r

m−n

2

4
√

2
.

Theorem 12 (d’Ocagne identity). Let m ≥ 0, n ≥ 0 be integers such that m ≥ n.

Then

CQmCQn+1 − CQm+1CQn = −
√

2(r̂1r̂2r
m−n

1
− r̂2r̂1r

m−n

2
).

Proof. By formula (16) we have

CQmCQn+1 − CQm+1CQn

=
1

4
(r1r2)

n(r̂1r̂2(r2 − r1)r
m−n

1
+ r̂2r̂1(r1 − r2)rm−n

2
)

=
1

4
(r̂1r̂2r

m−n

1
− r̂2r̂1r

m−n

2
)(r2 − r1) = −

√
2(r̂1r̂2r

m−n

1
− r̂2r̂1r

m−n

2
).

Theorem 13. Let m ≥ 0, n ≥ 0 be integers such that m ≥ n. Then

BQmCQn − CQmBQn =
r̂1r̂2r

m−n

1
− r̂2r̂1r

m−n

2

4
√

2
.



On balancing quaternions and Lucas-balancing quaternions 63

Proof. The Binet formulas for the balancing quaternions and Lucas-balancing
quaternions give

BQmCQn − CQmBQn

=
1

2(r1 − r2)
[(r̂1r

m

1 − r̂2r
m

2 )(r̂1r
n

1 + r̂2r
n

2 ) − (r̂1r
m

1 + r̂2r
m

2 )(r̂1r
n

1 − r̂2r
n

2 )]

=
1

2(r1 − r2)
[2r̂1r̂2r

m

1 rn2 − 2r̂2r̂1r
n

1 r
m

2 ]

=
1

4
√

2

[

(r1r2)n(r̂1r̂2r
m−n

1
− r̂2r̂1r

m−n

2
)
]

=
r̂1r̂2r

m−n

1
− r̂2r̂1r

m−n

2

4
√

2
,

which ends the proof.

Theorem 14. Let n ≥ 0, r ≥ 0, s ≥ 0 be integers. Then

BQn+rCQn+s −BQn+sCQn+r = −CQ0(r
r
1r

s
2 − rs1r

r
2)

2
√

2
.

Proof. By formulas (15), (16) and (20) we have

BQn+rCQn+s −BQn+sCQn+r

=
1

2(r1 − r2)

[

(r̂1r
n+r

1
− r̂2r

n+r

2
)(r̂1r

n+s

1
+ r̂2r

n+s

2
)

− (r̂1r
n+s

1
− r̂2r

n+s

2
)(r̂1r

n+r

1
+ r̂2r

n+r

2
)
]

=
1

8
√

2

[

r̂1r̂2r
n+r

1
rn+s

2
− r̂1r̂2r

n+s

1
rn+r

2
+ r̂2r̂1r

n+r

1
rn+s

2
− r̂2r̂1r

n+s

1
rn+r

2

]

=
1

8
√

2

[

(r1r2)n(r̂1r̂2 + r̂2r̂1)(r
r

1r
s

2 − rs1r
r

2)
]

=
−4CQ0(r

r
1r

s
2 − rs1r

r
2)

8
√

2
= −CQ0(r

r
1r

s
2 − rs1r

r
2)

2
√

2
.

Theorem 15. Let m ≥ 0, n ≥ 0 be integers. Then

BQmCQn + CQmBQn =
(r̂1)2rm+n

1
− (r̂2)2rm+n

2

4
√

2
.

Proof. Using formulas (15) and (16), we get

BQmCQn + CQmBQn =
1

2(r1 − r2)

[

2(r̂1)2rm+n

1
− 2(r̂2)2rm+n

2

]

=
(r̂1)2rm+n

1
− (r̂2)2rm+n

2

4
√

2
,

which ends the proof.
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Theorem 16. Let n ≥ 0 be an integer. Then

CQ2
n − 8BQ2

n = −2CQ0.

Proof. By simple calculations, using (20), we obtain

CQ2
n − 8BQ2

n =

(

r̂1r
n
1 + r̂2r

n
2

2

)2

− 8

(

r̂1r
n
1 − r̂2r

n
2

r1 − r2

)2

=
1

4

[

(r1r2)n2(r̂1r̂2 + r̂2r̂1)
]

=
r̂1r̂2 + r̂2r̂1

2
= −2CQ0.

In the same way we can prove the next result.

Theorem 17. Let n ≥ 0 be an integer. Then

CQ2n − 16BQ2
n =

r1
2n(r̂1 − (r̂1)2) + r2

2n(r̂2 − (r̂2)2) − 4CQ0

2
.

Theorem 18. Let n ≥ 0 be an integer. Then the summation formula for the

balancing quaternions is as follows:

n
∑

l=0

BQl =
BQn+1 −BQn − 1 − i− 5j − 29k

4
.

Proof. Using formula (7), we get

n
∑

l=0

BQl =
n
∑

l=0

(Bl + iBl+1 + jBl+2 + kBl+3)

=

n
∑

l=0

Bl + i

n
∑

l=0

Bl+1 + j

n
∑

l=0

Bl+2 + k

n
∑

l=0

Bl+3

=
1

4
(Bn+1 −Bn − 1) + i

(

1

4
(Bn+2 −Bn+1 − 1) −B0

)

+ j

(

1

4
(Bn+3 −Bn+2 − 1) −B0 −B1

)

+ k

(

1

4
(Bn+4 −Bn+3 − 1) −B0 −B1 −B2

)

=
1

4
(Bn+1 + iBn+2 + jBn+3 + kBn+4 − (Bn + iBn+1 + jBn+2 + kBn+3)

− (1 + i + j + k)) − iB0 − j(B0 + B1) − k(B0 + B1 + B2).

Hence
n
∑

l=0

BQl =
BQn+1 −BQn − (1 + i + j + k) − (4j + 28k)

4

=
BQn+1 −BQn − 1 − i− 5j − 29k

4
.
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In the same way, using formula (8), one can easily prove the next theorem.

Theorem 19. Let n ≥ 0 be an integer. Then

n
∑

l=0

CQl =
CQn+1 − CQn + 2 + i− 2j − 19k

4
.

4. Generating functions

In this section we will give the generating functions for the balancing quaternions
and the Lucas-balancing quaternions. Similarly like balancing sequence and the
Lucas-balancing sequence, these sequences can be considered as the coefficients of
the power series expansion of the corresponding generating functions. We recall
known results for the balancing sequence and the Lucas-balancing sequence.

Theorem 20 [1]. The generating function of the balancing sequence {Bn} has

the following form

G(Bn;x) =
x

1 − 6x + x2
.

Theorem 21 [10]. The generating function of the Lucas-balancing sequence {Cn}
has the following form

G(Cn;x) =
1 − 3x

1 − 6x + x2
.

Theorem 22. The generating function of the balancing quaternion has the fol-

lowing form

g(x) =
x + i + (6 − x)j + (35 − 6x)k

1 − 6x + x2
.

Proof. Let

g(x) = BQ0 + BQ1x + BQ2x
2 + · · · + BQnx

n + · · ·

be the generating function of the balancing quaternions. Hence

6xg(x) = 6BQ0x + 6BQ1x
2 + 6BQ2x

3 + · · · + 6BQn−1x
n + · · ·

x2g(x) = BQ0x
2 + BQ1x

3 + BQ2x
4 + · · · + BQn−2x

n + · · · .

Using the recurrence BQn = 6BQn−1 −BQn−2, we get

g(x) − 6xg(x) + x2g(x) = BQ0 + (BQ1 − 6BQ0)x

+ (BQ2 − 6BQ1 + BQ0)x
2 + · · ·

= BQ0 + (BQ1 − 6BQ0)x.
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Thus

g(x) =
BQ0 + (BQ1 − 6BQ0)x

1 − 6x + x2
.

Using equalities (13), we obtain

g(x) =
i + 6j + 35k + (1 − j − 6k)x

1 − 6x + x2
=

x + i + (6 − x)j + (35 − 6x)k

1 − 6x + x2
.

In the same way we can prove the next theorem.

Theorem 23. The generating function of the Lucas-balancing quaternion has

the following form

f(x) =
1 − 3x + (3 − x)i + (17 − 3x)j + (99 − 17x)k

1 − 6x + x2
.

5. Matrix generators

In [9] it was introduced a matrix generator for the balancing numbers — balancing
Q-matrix which was given by

(21) QB =

[

6 −1
1 0

]

.

It was proved the following result.

Theorem 24 [9]. Let QB be the balancing matrix given in (21). Then for every

positive integer n,

Qn

B =

[

Bn+1 −Bn

Bn −Bn−1

]

.

Similarly for the Lucas-balancing numbers it was proved the following result.

Theorem 25 [9]. Let RB =

[

3 −1
1 −3

]

. Then for every positive integer n,

RBQ
n

B =

[

Cn+1 −Cn

Cn −Cn−1

]

.

Theorem 26. Let n ≥ 1 be an integer. Then

[

BQn+1 −BQn

BQn −BQn−1

]

=

[

BQ2 −BQ1

BQ1 −BQ0

]

·
[

6 −1
1 0

]n−1

.
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Proof. (By induction on n). If n = 1 then the result is obvious. Assuming the
result holds for n, we will prove it for n + 1. By the induction’s hypothesis and
Theorem 1 we get

[

BQ2 −BQ1

BQ1 −BQ0

]

·
[

6 −1
1 0

]n−1

·
[

6 −1
1 0

]

=

[

BQn+1 −BQn

BQn −BQn−1

]

·
[

6 −1
1 0

]

=

[

6BQn+1 −BQn −BQn+1

6BQn −BQn−1 −BQn

]

=

[

BQn+2 −BQn+1

BQn+1 −BQn

]

.

In the same way, using Theorem 2 and Corollary 3, one can easily prove the
next result.

Theorem 27. Let n ≥ 1 be an integer. Then

[

CQn+1 −CQn

CQn −CQn−1

]

=

[

3 −1
1 −3

]

·
[

BQ2 −BQ1

BQ1 −BQ0

]

·
[

6 −1
1 0

]n−1

.
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