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Abstract

In this study, we consider the likelihood ratio test (LRT) for a normal
mean vector when the data have a monotone pattern of missing observations.
We derive modified likelihood ratio test (MLRT) statistic by using decom-
position of the likelihood ratio (LR). Further, we investigate the accuracy of
the upper percentiles of this test statistic by Monte Carlo simulation.
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1. Introduction

In statistical data analyses, testing hypotheses with missing data is an important
problem. In this study, we consider the one-sample test for a normal mean vector
with monotone missing data. For the one-sample problem with k-step monotone
missing data, the closed-form expressions for the MLEs of the mean vector and
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covariance matrix were given by Jinadasa and Tracy [9]. Kanda and Fujikoshi
[10] discussed the properties of the MLEs in the case of k-step monotone missing
data using the conditional approach. The one-sample problem of the test for the
mean vector with monotone missing data has been discussed by many authors.
For discussions related to Hotelling’s T 2-type statistic, see Krishnamoorthy and
Pannala [13]; Chang and Richards [3]; Seko et al. [17]; Yagi and Seo [23]; and
Kawasaki and Seo [11], among others. For a discussion of the LRT statistic,
see Krishnamoorthy and Pannala [12] and Seko et al. [17]. For the two-sample
problem, see Yu et al. [25]; Seko et al. [16]; Yagi and Seo [24]. In particular,
Yagi and Seo [24] gave the approximate upper percentiles of the Hotelling’s T 2-
type statistics. They also discussed multivariate multiple comparisons for mean
vectors. For a general missing data pattern, Srivastava [20] discussed the LRT for
mean vectors, and Seo and Srivastava [18] gave a test of equality of means and
the simultaneous confidence intervals. In addition, for the simultaneous testing
of the mean vector and the covariance matrix with monotone missing data, see
Hao and Krishnamoorthy [6]; Tsukada [22]; Hosoya and Seo [7, 8], among others.
On the other hand, for non-missing and multivariate normality, the asymptotic
expansion for LR-criterion was discussed by Muirhead [15]; Siotani et al. [19];
and Anderson [1], among others.

In this paper, for the one-sample test of the mean vector, we give the LRT
statistic for k-step monotone missing data and derive MLRT statistic by using
the decomposition (see Bhargava [2] and Krishnamoorthy and Pannala [12]). In
the process deriving the MLRT statistic, we give asymptotic expansions of the
LR of the test for a mean vector and those of sub-mean vector. For the test for
a subvector under multivariate normality, see e.g., Siotani et al. [19]. Recently,
under nonnormality, Gupta et al. [5] discussed the asymptotic expansion of the
distribution of Rao’s U -statistic, which is proposed as test for a subvector or
additional information. This paper is organized in the following way. In Section
2, we present the assumptions and notation. In Section 3, we derive the LRT
statistic, MLRT and modified test (MT) statistics, which converge to the χ2

distribution faster than the LRT statistic as the sample size tends to infinity. In
Section 4, some simulation results for three- and five-step monotone missing data
cases are presented to investigate the accuracy of the upper percentiles of the null
distributions of MT and MLRT statistics.

2. Assumptions and notation

We consider the one-sample problem of testing for a mean vector with a k-step
monotone missing data pattern. Let xi be a pi×1 normal random vector with the
mean vector µi and covariance matrix Σi, where µi = (µ)i = (µ1, µ2, . . . , µpi)

′,
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and Σi is the pi × pi principal submatrix of Σ(= Σ1) with p = p1 > p2 >
· · · > pk > 0. Further, let xi, i = 1, 2, . . . , k be mutually independent. Suppose
that xi1,xi2, . . . ,xini

are independent and identically distributed samples from
xi, i = 1, 2, . . . , k, where n1 > p. Note that k denotes the number of steps. The
above data set is called k-step monotone missing data:
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where an asterisk indicates a missing observation. For a k-step monotone sample
or k-step monotone missing data pattern, see Bhargava [2], Little and Rubin [14],
and Srivastava [21], among others. In this paper, we assume that the data are
missing completely at random (MCAR), and we adopt the notation from Jinadasa
and Tracy [9]. As for the partitions of Σ, for 1 ≤ i < j ≤ k, let (Σi)j be the
principal submatrix of Σi of order pj × pj; we define

Σi = (Σ1)i, Σ1 = Σ =

(
Σi Σi2

Σ
′
i2 Σi3

)
, Σi−1 =

(
Σi Σ(i−1,2)

Σ
′
(i−1,2) Σ(i−1,3)

)
,

and

Σ(i−1,3)·i = Σ(i−1,3) −Σ
′
(i−1,2)Σ

−1
i Σ(i−1,2), i = 2, 3, . . . , k.

For example, when k = 3, we can express Σ1 as

Σ1 =

p3
︷ ︸︸ ︷

p2−p3
︷ ︸︸ ︷

p1−p2
︷ ︸︸ ︷



Σ3 Σ(2,2)
Σ(1,2)

Σ
′
(2,2) Σ(2,3)

Σ
′
(1,2) Σ(1,3)




}
p3

}
p2 − p3

}
p1 − p2

.
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3. LRT and MLRT statistics

Consider the null hypothesis

H0 : µ = µ0

against the alternative H1 : µ 6= µ0, where µ0 is known. Without loss of gener-
ality, we can assume that µ0 = 0. Then, the LR is given by

(1) λ =

k∏

i=1

(
|Σ̂i|
|Σ̃i|

) 1

2
ni

,

where Σ̂i is the MLE of Σi under H1, and Σ̃i is the MLE of Σi under H0. Let

Ei =

ni∑

j=1

(xij − xi)(xij − xi)
′, xi =

1

ni

ni∑

j=1

xij , i = 1, 2, . . . , k,

d1 = x1, di =
ni

Ni+1

[
xi −

1

Ni

i−1∑

j=1

nj(xj)i

]
, i = 2, 3, . . . , k,

N1 = 0, Ni+1 = Ni + ni

(
=

i∑

j=1

nj

)
, i = 1, 2, . . . , k.

Then, we can express Σ̂ concretely (see Jinadasa and Tracy [9]) as

Σ̂ =
1

n1
H1 +

k∑

i=2

1

Ni+1
F i

[
Hi −

ni

Ni

Li−1,1

]
F ′

i,

where

H1 = E1, H i = Ei +
NiNi+1

ni

did
′
i, i = 2, 3, . . . , k,

L1 = H1, Li = (Li−1)i +H i, i = 2, 3, . . . , k,

Li1 = (Li)i+1, Li =

(
Li1 Li2

L′
i2 Li3

)
, i = 1, 2, . . . , k − 1,

G1 = Ip1 , Gi+1 =

(
Ipi+1

L′
i2L

−1
i1

)
, i = 1, 2, . . . , k − 1,

F 1 = G1, F i = F i−1Gi, i = 2, 3, . . . , k.



A modified LRT for a mean vector with missing data 43

When k = 3, we can see that the above result of Σ̂ coincides with the result in
the three-step case (see Yagi and Seo [23]). By the same derivation in Jinadasa
and Tracy [9], it holds that the MLE of Σ under H0, Σ̃ is equal to Σ̂ with xi = 0,
i = 1, 2, . . . , k. That is, Σ̃ can be obtained as Σ̂ in the case that

H i =

ni∑

j=1

xijx
′
ij , i = 1, 2, . . . , k.

We note that the null distribution of the LRT statistic Q(= −2 log λ) is
asymptotically a χ2 distribution with p degrees of freedom. However, it may be
noted that the upper percentiles of the χ2 distribution are not a good approxima-
tion to those of the LRT statistic when the sample size is not large. For example,
Table 1 gives the simulated values of the upper 100α percentiles of Q, q(α) and

Table 1. The upper percentiles of Q and the actual Type I error rates.

(p1, p2, p3) = (8, 4, 2) (p1, p2, p3, p4, p5) = (15, 12, 9, 6, 3)

n1 q(α) αQ q(α) αQ

α = 0.05

20 20.74 16.71 46.86 47.84
30 18.53 11.24 33.86 23.03
40 17.70 9.25 30.91 16.13
50 17.18 8.17 29.52 13.05

100 16.29 6.42 27.15 8.37
200 15.88 5.65 26.03 6.53
400 15.68 5.31 25.53 5.74
∞ 15.51 5.00 25.00 5.00

Note. n2 = n3 = n4 = n5 = 10, χ2
8(0.05)=15.51, χ2

15(0.05)=25.00.

the actual Type I error rates, αQ = 100Pr{Q > χ2
p(α)} for the three- and five-step

monotone missing data cases, where χ2
p(α) is the upper 100α percentile of the χ2

distribution with p degrees of freedom. It may be seen that the upper percentiles
of the χ2 distribution are useful as an approximation to the upper percentiles of
Q for cases in which the sample size is considerably large. Therefore, we consider
the MLRT statistic whose null distribution is closer to the χ2 distribution than
that of the LRT statistic even when the sample size is small. In particular, we
derive an asymptotic expansion for the distribution function of the LRT statistic
in a situation when n1 → ∞ with qi = ni/n1 → δi ∈ [0,∞), i = 2, 3, . . . , k.
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Using the notation in Section 2, we can write λ in (1) as

λ =

k∏

i=1

λi,

where

λ1 =

(
|Σ̂k|
|Σ̃k|

)Nk+1

2

, λi =

(
|Σ̂(k−i+1,3)·k−i+2|
|Σ̃(k−i+1,3)·k−i+2|

)Nk−i+2

2

, i = 2, 3, . . . , k,(2)

Nk+1 =

k∑

j=1

nj, Nk−i+2 =

k−i+1∑

j=1

nj ,

Σ̂(k−i+1,3)·k−i+2 and Σ̃(k−i+1,3)·k−i+2 are given by

Σ̂(k−i+1,3)·k−i+2 = Σ̂(k−i+1,3) − Σ̂
′

(k−i+1,2)Σ̂
−1

k−i+2Σ̂(k−i+1,2)

and

Σ̃(k−i+1,3)·k−i+2 = Σ̃(k−i+1,3) − Σ̃
′

(k−i+1,2)Σ̃
−1

k−i+2Σ̃(k−i+1,2),

respectively. We note that the values of λi, i = 1, 2, . . . , k are mutually indepen-
dent.

Further, we consider the following hypotheses:

H01 : µk = 0 vs. H11 : µk 6= 0,

H0i : Ak−i+1µk−i+1 = 0 given µk−i+2 = 0

vs. H1i : Ak−i+1µk−i+1 6= 0 given µk−i+2 = 0, i = 2, 3, . . . , k,

where Ak−i+1 =
(
O Ipk−i+1−pk−i+2

)
is a (pk−i+1 − pk−i+2)× pk−i+1 matrix.

Let the parameter spaces of Ω0, Ωi, i = 1, 2, . . . , k − 1 and Ωk be

Ω0 = {(µ,Σ) : −∞ < µj < ∞, j = 1, 2, . . . , p, Σ > O},

Ωi = {(µ,Σ) : µk−i+1 = 0, −∞ < µj < ∞, j = pk−i+1+1, pk−i+1+2, . . . , p,

Σ > O}, i = 1, 2, . . . , k − 1,

Ωk = {(µ,Σ) : µ = 0, Σ > O},
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respectively. Then, the LR for the hypothesis H0i is given by

(3) λ0i =

max
(µ,Σ)∈Ωi

L(µ,Σ)

max
(µ,Σ)∈Ωi−1

L(µ,Σ)
, i = 1, 2, . . . , k.

Therefore, since λi in (2) is equal to λ0i in (3), we have

λ =

k∏

i=1

λ0i.

That is, we note −2 log λ1 is the usual LRT statistic of the test for pk dimensional
mean vector, and −2 log λi, i = 2, 3, . . . , k is LRT statistic of the test for a subvec-
tor. The above result is obtained by Krishnamoorthy and Pannala [12]. For the
test for a subvector under the complete data set and the multivariate normality,
see e.g., Siotani et al. [19]. Therefore, we have the following theorem.

Theorem 1. Suppose that xij is distributed as Npi(µi,Σi), i = 1, 2, . . . , k, j =
1, 2, . . . , ni, where p = p1 > p2 > · · · > pk > pk+1 = 0 and n1 > p. Then,

when the null hypothesis H0i is true, the cumulative distribution function of Q∗
i

(= −2ρi log λi) can be expressed for large Nk−i+2 as

Pr(Q∗
i ≤ x) = Gpk−i+1−pk−i+2

(x) +O(N−2
k−i+2), i = 1, 2, . . . , k,

where λi is given in (2) and

ρi = 1− 1

2Nk−i+2
(pk−i+1 + pk−i+2 + 2), i = 1, 2, . . . , k,

Gp(x) is the distribution function of a χ2-variate with p degrees of freedom.

Proof. First we derive an asymptotic expansion of the characteristic function
of Q1 (= −2 log λ1). We use the following notation to simplify setting. Let y1,
y2, . . . ,yNk+1

be distributed as pk dimensional multivariate normal distribution.
Then λ1 can be written as

λ1 =

( |Uk|
|Uk +Nk+1yky

′
k|

)Nk+1

2

,

where

yk =
1

Nk+1

Nk+1∑

j=1

yj, Uk =

Nk+1∑

j=1

(yj − yk)(yj − yk)
′.
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Therefore, expanding Q1(= −2 log λ1) by the perturbation method and calculat-
ing the characteristic function, we obtain

E[exp(itQ1)] = (1− 2it)−
pk
2

[
1 +

β1
Nk+1

{
1− (1− 2it)−1

} ]
+O

(
N−2

k+1

)
,

where

β1 = −1

4
pk(pk + 2).

Inverting the characteristic function, we have

Pr(Q1 ≤ x) =Gpk(x) +
β1

Nk+1
[Gpk(x)−Gpk+2(x)] +O

(
N−2

k+1

)
.

Therefore, if ρ1 = 1− (pk+2)/(2Nk+1), then the cumulative distribution function
of Q∗

1 (= −2ρ1 log λ1) is given by

Pr(Q∗
1 ≤ x) = Gpk(x) +O

(
N−2

k+1

)
.

Similar to the case of Q1, we consider the cumulative distribution function
of Qi (= −2 log λi), i = 2, 3, . . . , k. Let y1,y2, . . . ,yNk−i+2

be distributed as
Npk−i+1

(η,∆), where η is a pk−i+1 × 1 mean vector and ∆ is a pk−i+1 × pk−i+1

covariance matrix. In order to be the notation shorter, we omit the index i of η
and ∆. Further let η and ∆ be partitioned as

η =

(
η1

η2

)}
ri}
si

, ∆ =

ri
︷ ︸︸ ︷

si
︷ ︸︸ ︷(

∆11 ∆12

∆21 ∆22

)}
ri}
si

,

where ri = pk−i+2, si = pk−i+1 − pk−i+2. Then, since λi is the LR for testing

Hi : η2 = 0 given η1 = 0 vs. Ki : η2 6= 0 given η1 = 0, i = 2, 3, . . . , k,

we can write

λi =

(
1 +Nk−i+2y

′
1U

−1
11 y1

1 +Nk−i+2y
′U−1y

)Nk−i+2

2

,

where

y =
1

Nk−i+2

Nk−i+2∑

j=1

yj, U =

Nk−i+2∑

j=1

(yj − y)(yj − y)′,

and

y =

(
y1

y2

)}
ri}
si

, U =

ri
︷ ︸︸ ︷

si
︷ ︸︸ ︷(

U11 U12

U21 U22

)}
ri}
si

.
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Without loss of generality, we can assume that η = 0, and ∆ = I. Let

y =
1√

Nk−i+2

z,
1

Nk−i+2 − 1
U = I +

1√
Nk−i+2

V .

We use partitions of z and V as

z =

(
z1

z2

)}
ri}
si

, V =

ri
︷ ︸︸ ︷

si
︷ ︸︸ ︷(

V 11 V 12

V 21 V 22

)}
ri}
si

.

Then, we can expand Qi as

Qi = z′z−z′
1z1−

1√
Nk−i+2

(z′V z−z′
1V 11z1)

+
1

Nk−i+2

{
z′V 2z−z′

1V
2
11z1−

1

2
(z′z−z′

1z1)(z
′z+z′

1z1−2)
}
+Op

(
N

− 3

2

k−i+2

)
.

Hence, for j = 2, 3, . . . , k,

E[exp{it(Qj)}] = E
[
exp{it(z′

2z2)}
]
+ E

[(
X +

1

2
X2
)
exp{it(z′

2z2)}
]

+O
(
N

− 3

2

k−j+2

)
,

where i =
√
−1 and

X = it
[
− 1√

Nk−j+2

(z′V z − z′
1V 11z1)

+
1

Nk−j+2

{
z′
1V 12V 21z1 + 2z′

1(V 11V 12 + V 12V 22)z2

+ z′
2(V 21V 12 + V 2

22)z2 −
1

2
z′
2z2(2z

′
1z1 + z′

2z2 − 2)
}]

.

Therefore, after calculating the expectation, we obtain

E[exp(itQj)] = (1− 2it)−
sj
2

[
1 +

βj
Nk−j+2

{
1− (1− 2it)−1

} ]
+O

(
N−2

k−j+2

)
,

where

βj = −1

4
sj(2rj + sj + 2),
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and hence

Pr(Qj ≤ x) = Gsj (x) +
βj

Nk−j+2

[
Gsj(x)−Gsj+2(x)

]
+O

(
N−2

k−j+2

)
.

Therefore, if ρi = 1−(2ri+si+2)/(2Nk−i+2), then the cumulative distribution
function of Q∗

i (= −2ρi log λi) is given by

Pr(Q∗
i ≤ x) = Gsi(x) +O

(
N−2

k−i+2

)
,

and the proof is complete.

Using Theorem 1, we can give the MT statistic Q∗(=
∑k

i=1Q
∗
i ) with an

improved chi-squared approximation. However, this transformation statistic Q∗

is not always monotone. For the monotone transformation, see Fujikoshi [4].
On the other hand, by gathering up the expanded results for the characteristic
functions of Qi, i = 1, 2, . . . , k, we obtain the following theorem.

Theorem 2. Under H0, the cumulative distribution function of Q†(= −2ρ log λ)
can be expressed for large n1 as

Pr(Q† ≤ x) = Gp(x) +O(n−2
1 ),

where

ρ = 1− 1

2n1p

k∑

i=1

1

mk−i+1
(pk−i+1 − pk−i+2)(pk−i+1 + pk−i+2 + 2),

mk−i+1 = 1 +
∑k−i+1

j=2 qj, qj(= nj/n1) is a nonnegative constant, and pk+1 = 0.

We note that the value of ρ coincides with that of Krishnamoorthy and Pan-
nala [12] when k = 2.

4. Simulation studies

In this section, we study the numerical accuracy of the upper percentiles of the MT
and MLRT statistics using the actual Type I error rates. In order to investigate
the accuracy of the approximation, we compute the upper percentiles of Q, Q∗ and
Q† with monotone missing data by Monte Carlo simulation. For each parameter,
the simulation was executed 106 times using normal random vectors generated
from Npi(0, Ipi), i = 1, 2, . . . , k.
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In Tables 2–5, we provide the simulated upper 100α percentiles of Q, Q∗ and
Q† for the three-step and five-step cases. Further, we provide the actual Type I
error rates, αQ, αQ∗ and αQ† given by

αQ = 100Pr{Q > χ2
p(α)}, αQ∗ = 100Pr{Q∗ > χ2

p(α)},

and
αQ† = 100Pr{Q† > χ2

p(α)},

respectively, where χ2
p(α) is the upper 100α percentile of the χ2 distribution with

p degrees of freedom.
It may be noted from Tables 2–5 that each value of q(α), q∗(α) and q†(α)

is closer to the upper percentiles of the χ2 distribution with p degrees of free-
dom, χ2

p(α), when n1 becomes large. It is seen from Tables 2–4 that q∗(α) for
(p1, p2, p3) = (8, 4, 2) and (15, 12, 9) is a considerably good approximate value
when n1 is greater than 20. Similarly, it is seen from Table 5 that q∗(α) for
(p1, p2, p3.p4, p5) = (15, 12, 9, 6, 3) is a considerably good approximate value when
n1 is greater than 20 without regard to the sample size of ni, i ≥ 2. As for
q†(α), it is seen from Tables 2 and 3 that q†(α) for (p1, p2, p3) = (8, 4, 2) is a
good approximate value when n1 is greater than 30. Similarly, it is seen from
Table 4 that q†(α) for (p1, p2, p3) = (15, 12, 9) is a good approximate value when
n1 is greater than 50. For the case of five-step monotone missing data in Table
5, q†(α) for (p1, p2, p3, p4, p5) = (15, 12, 9, 6, 3) is a good approximation to χ2

p(α)
when n1 is greater than 50. It may be noted from the simulation results that the
MT statistic Q∗ converges to the χ2 distribution faster than the MLRT statistic
Q† in almost all cases, including the case of unbalanced sample sizes.

5. Conclusions

We have developed the MLRT statistic Q† and the MT statistic Q∗ with general
monotone missing data in one-sample problem, where Q∗ is not always monotone.
Further, we presented that the LR for the one-sample test of the mean vector with
monotone missing data can be expressed as the products of the LR of the test
for a mean vector and those of subvector, and derived the asymptotic expansion
by the perturbation method. The null distribution of MLRT or MT statistic is
considerably closer to the χ2 distribution than that of the LRT statistic, even for
small samples.
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Table 2. The upper percentiles of Q, Q∗, Q† and the actual Type I error rates

when (p1, p2, p3) = (8, 4, 2) and α = 0.05.

n1 n2 n3 q(α) q∗(α) q†(α) αQ αQ∗ αQ†

10 10 10 41.98 16.77 24.49 56.66 7.20 22.06

20 10 10 20.74 15.58 16.16 16.71 5.12 6.15
30 10 10 18.53 15.52 15.72 11.24 5.02 5.37
40 10 10 17.70 15.55 15.65 9.25 5.07 5.24
50 10 10 17.18 15.52 15.57 8.17 5.02 5.11

100 10 10 16.29 15.50 15.51 6.42 4.98 5.00

200 10 10 15.88 15.48 15.49 5.65 4.96 4.97

400 10 10 15.68 15.49 15.49 5.31 4.97 4.97

10 20 20 41.70 16.77 25.30 55.54 7.21 23.63
20 20 20 20.55 15.57 16.27 16.00 5.11 6.29
30 20 20 18.43 15.55 15.78 10.88 5.07 5.45
40 20 20 17.54 15.50 15.60 8.97 4.99 5.16
50 20 20 17.12 15.52 15.58 8.03 5.01 5.12

100 20 20 16.29 15.52 15.53 6.37 5.01 5.03
200 20 20 15.89 15.51 15.51 5.67 5.00 5.00

400 20 20 15.69 15.49 15.50 5.30 4.97 4.98

10 50 50 41.40 16.77 26.03 54.61 7.19 25.01
20 50 50 20.29 15.56 16.36 15.40 5.09 6.46
30 50 50 18.21 15.51 15.79 10.45 5.00 5.47
40 50 50 17.44 15.53 15.66 8.74 5.04 5.26
50 50 50 17.01 15.52 15.60 7.83 5.02 5.15

100 50 50 16.24 15.51 15.53 6.30 5.01 5.03
200 50 50 15.91 15.53 15.54 5.68 5.04 5.05
400 50 50 15.69 15.50 15.50 5.30 4.99 4.99

30 30 30 18.30 15.52 15.76 10.65 5.01 5.43
40 40 40 17.47 15.53 15.65 8.78 5.03 5.24

100 100 100 16.18 15.49 15.51 6.22 4.98 5.00

200 200 200 15.83 15.50 15.50 5.57 4.98 4.99

400 400 400 15.68 15.51 15.51 5.28 5.01 5.01

Note. χ2
8(0.05) = 15.51. The closest to α(= 0.05) in the values αQ, αQ∗ and αQ†

of each low is boldface.
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Table 3. The upper percentiles of Q, Q∗, Q† and the actual Type I error rates

when (p1, p2, p3) = (8, 4, 2), α = 0.05, and n2 6= n3.

n1 n2 n3 q(α) q∗(α) q†(α) αQ αQ∗ αQ†

10 10 20 42.00 16.77 24.67 56.44 7.22 22.36
20 10 20 20.69 15.56 16.18 16.50 5.08 6.15
30 10 20 18.52 15.53 15.75 11.17 5.05 5.39
40 10 20 17.64 15.51 15.62 9.17 5.01 5.17
50 10 20 17.18 15.53 15.59 8.18 5.03 5.14

10 10 50 41.84 16.77 24.80 56.29 7.21 22.73
20 10 50 20.65 15.58 16.22 16.46 5.12 6.22
30 10 50 18.46 15.52 15.75 11.06 5.02 5.41
40 10 50 17.57 15.49 15.60 9.04 4.98 5.15
50 10 50 17.17 15.54 15.60 8.13 5.05 5.15

10 20 10 41.74 16.77 25.22 55.65 7.22 23.39
20 20 10 20.55 15.57 16.24 16.14 5.10 6.25
30 20 10 18.42 15.53 15.75 10.94 5.03 5.41
40 20 10 17.62 15.55 15.66 9.07 5.08 5.25
50 20 10 17.13 15.52 15.58 8.06 5.02 5.13

10 20 50 41.63 16.78 25.41 55.36 7.25 23.83
20 20 50 20.44 15.53 16.24 15.89 5.05 6.27
30 20 50 18.35 15.51 15.75 10.75 5.00 5.41
40 20 50 17.50 15.48 15.59 8.89 4.95 5.14
50 20 50 17.09 15.52 15.58 8.01 5.01 5.13

10 50 10 41.45 16.76 25.95 54.71 7.19 24.80
20 50 10 20.30 15.56 16.33 15.48 5.09 6.43
30 50 10 18.21 15.49 15.76 10.50 4.97 5.42
40 50 10 17.48 15.55 15.67 8.79 5.06 5.28
50 50 10 16.98 15.47 15.55 7.79 4.94 5.06

10 50 20 41.47 16.77 26.00 54.77 7.21 24.94
20 50 20 20.34 15.60 16.38 15.49 5.15 6.49
30 50 20 18.23 15.52 15.79 10.48 5.02 5.46
40 50 20 17.44 15.52 15.64 8.73 5.01 5.23
50 50 20 17.01 15.51 15.58 7.84 5.00 5.11

Note. χ2
8(0.05) = 15.51. The closest to α(= 0.05) in the values αQ, αQ∗ and αQ†

of each low is boldface.
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Table 4. The upper percentiles of Q, Q∗, Q† and the actual Type I error rates

when (p1, p2, p3) = (15, 12, 9) and α = 0.05.

n1 n2 n3 q(α) q∗(α) q†(α) αQ αQ∗ αQ†

20 10 10 47.04 25.17 32.73 48.54 5.23 17.38

30 10 10 34.05 25.08 26.56 23.47 5.11 7.23
40 10 10 31.07 25.06 25.68 16.51 5.09 5.97
50 10 10 29.58 25.00 25.34 13.31 5.01 5.46

100 10 10 27.17 25.00 25.06 8.43 5.00 5.09
200 10 10 26.09 25.02 25.03 6.60 5.03 5.05
400 10 10 25.51 24.98 24.98 5.74 4.98 4.98

20 20 20 45.50 25.14 33.78 43.71 5.20 18.81
30 20 20 32.98 25.02 26.72 20.62 5.04 7.48
40 20 20 30.36 25.04 25.74 14.79 5.05 6.04
50 20 20 29.10 25.01 25.39 12.16 5.02 5.54

100 20 20 26.99 24.99 25.06 8.08 4.99 5.08
200 20 20 26.02 25.00 25.01 6.50 5.00 5.02
400 20 20 25.50 24.98 24.99 5.71 4.98 4.99

20 50 50 43.91 25.09 34.89 39.21 5.13 20.48
30 50 50 31.77 25.03 26.98 17.59 5.04 7.88
40 50 50 29.40 25.00 25.82 12.70 5.00 6.15
50 50 50 28.38 25.01 25.46 10.63 5.02 5.64

100 50 50 26.68 24.98 25.06 7.58 4.98 5.09
200 50 50 25.91 24.99 25.01 6.34 4.99 5.02
400 50 50 25.47 24.98 24.98 5.66 4.98 4.98

30 30 30 32.40 25.02 26.84 19.12 5.04 7.67
40 40 40 29.60 24.99 25.79 13.17 4.99 6.11

100 100 100 26.43 24.97 25.06 7.13 4.97 5.09
200 200 200 25.71 25.03 25.05 6.01 5.04 5.07
400 400 400 25.34 25.00 25.01 5.46 5.01 5.02

Note. χ2
15(0.05) = 25.00. The closest to α(= 0.05) in the values αQ, αQ∗ and αQ†

of each low is boldface.
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Table 5. The upper percentiles of Q, Q∗, Q† and the actual Type I error rates

when (p1, p2, p3, p4, p5) = (15, 12, 9, 6, 3) and α = 0.05.

n1 n2 = · · · = n5 q(α) q∗(α) q†(α) αQ αQ∗ αQ†

20 10 46.86 25.08 33.06 47.84 5.13 17.89

30 10 33.86 24.99 26.63 23.03 4.99 7.40
40 10 30.91 24.98 25.69 16.13 4.98 5.97
50 10 29.52 24.99 25.39 13.05 4.99 5.53

100 10 27.15 25.02 25.08 8.37 5.03 5.11
200 10 26.03 24.98 24.99 6.53 4.98 4.99

400 10 25.53 25.00 25.01 5.74 5.01 5.01

20 20 45.27 25.11 33.97 43.11 5.16 19.09
30 20 32.82 25.01 26.79 20.24 5.01 7.60
40 20 30.21 24.99 25.76 14.49 4.99 6.07
50 20 29.01 25.00 25.43 11.96 5.00 5.58

100 20 26.96 24.99 25.07 8.03 4.99 5.10
200 20 25.98 24.97 24.99 6.44 4.97 4.99

400 20 25.53 25.01 25.01 5.75 5.02 5.03

20 50 43.83 25.07 35.03 38.92 5.10 20.66
30 50 31.68 25.03 27.03 17.32 5.05 7.94
40 50 29.34 25.01 25.87 12.51 5.02 6.23
50 50 28.31 25.01 25.48 10.47 5.02 5.67

100 50 26.65 25.00 25.08 7.50 5.00 5.11
200 50 25.83 24.94 24.95 6.20 4.92 4.94

400 50 25.49 25.01 25.02 5.67 5.02 5.03

30 30 32.24 25.00 26.88 18.84 5.01 7.75
40 40 29.52 25.00 25.84 12.93 5.00 6.18

100 100 26.41 25.01 25.10 7.15 5.02 5.14
200 200 25.65 24.98 25.01 5.91 4.97 5.01

400 400 25.32 25.00 25.01 5.44 5.01 5.02

Note. χ2
15(0.05) = 25.00. The closest to α(= 0.05) in the values αQ, αQ∗ and αQ†

of each low is boldface.
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