VERTICES CONTAINED IN ALL OR IN NO MINIMUM SEMITOTAL DOMINATING SET OF A TREE

MICHAEL A. HENNING

AND

ALISTER J. MARCON

Department of Pure and Applied Mathematics
University of Johannesburg
Auckland Park, 2006, South Africa

e-mail: mahenning@uj.ac.za
alister.marcon@gmail.com

Abstract

Let G be a graph with no isolated vertex. In this paper, we study a parameter that is squeezed between arguably the two most important domination parameters; namely, the domination number, $\gamma(G)$, and the total domination number, $\gamma_t(G)$. A set S of vertices in a graph G is a semitotal dominating set of G if it is a dominating set of G and every vertex in S is within distance 2 of another vertex of S. The semitotal domination number, $\gamma_{t2}(G)$, is the minimum cardinality of a semitotal dominating set of G. We observe that $\gamma(G) \leq \gamma_{t2}(G) \leq \gamma_t(G)$. We characterize the set of vertices that are contained in all, or in no minimum semitotal dominating set of a tree.

Keywords: domination, semitotal domination, trees.

2010 Mathematics Subject Classification: 05C69.

1. Introduction

In this paper, we continue the study of a parameter, called the semitotal domination number, that is squeezed between arguably the two most important domination parameters; namely, the domination number and the total domination

1Research supported in part by the South African National Research Foundation and the University of Johannesburg.

2Funded by the South African National Research Foundation.
number. A dominating set in a graph G is a set S of vertices of G such that every vertex in $V(G) \setminus S$ is adjacent to at least one vertex in S. The domination number of G, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set of G. A total dominating set, abbreviated a TD-set, of a graph G with no isolated vertex is a set S of vertices of G such that every vertex in $V(G)$ is adjacent to at least one vertex in S. The total domination number of G, denoted by $\gamma_t(G)$, is the minimum cardinality of a TD-set of G. The literature on the subject of domination parameters in graphs up to the year 1997 has been surveyed and detailed in the so-called domination book [4]. Total domination is now well studied in graph theory. For a recent book on the topic, see [9]. A survey of total domination in graphs can also be found in [5].

The concept of semitotal domination in graphs was introduced and studied by Goddard, Henning and McPillan [3], and studied further in [6, 7] and elsewhere. A set S of vertices in a graph G with no isolated vertices is a semitotal dominating set, abbreviated semi-TD-set, of G if it is a dominating set of G and every vertex in S is within distance 2 of another vertex of S. The semitotal domination number, denoted by $\gamma_{t2}(G)$, is the minimum cardinality of a semi-TD-set of G. A semi-TD-set of G of cardinality $\gamma_{t2}(G)$ is called a $\gamma_{t2}(G)$-set. Since every TD-set is a semi-TD-set, and since every semi-TD-set is a dominating set, we have the following observation first observed in [3]. For every graph G with no isolated vertex, $\gamma(G) \leq \gamma_{t2}(G) \leq \gamma_t(G)$.

Mynhardt [10] characterized all the vertices that are in all, or in no minimum dominating set. Moreover, the same type of results were established by Cockayne, Henning and Mynhardt in [2] for total domination, Henning and Plummer [8] for paired domination and Blidia, Chellali and Khelifi [1] for double domination. Motivated by these results, we aim to characterize all the vertices that are in all, or in no minimum semitotal dominating set in a rooted tree T.

1.1. Terminology and Notation

For notation and graph theory terminology that are not defined herein, we refer the reader to [9]. Let $G = (V, E)$ be a graph with vertex set $V = V(G)$ of order $n = |V|$ and edge set $E = E(G)$ of size $m = |E|$, and let v be a vertex in V. We denote the degree of v in G by $d_G(v)$. A leaf of G is a vertex of degree 1, while a support vertex of G is a vertex adjacent to a leaf. A strong support vertex is a support vertex with at least two leaf-neighbors. We define a branch vertex as a vertex of degree at least 3. A star is a tree with at most one vertex that is not a leaf.

For a set $S \subseteq V$, the subgraph induced by S is denoted by $G[S]$. A cycle and path on n vertices are denoted by C_n and P_n, respectively. For two vertices u and v in a connected graph G, the distance $d_G(u, v)$ between u and v is the length of a shortest (u, v)-path in G. The distance $d_G(v, S)$ between a vertex
v and a set S of vertices in a graph G is the minimum distance from v to a vertex of S in G. The maximum distance among all pairs of vertices of G is the diameter of a graph G which is denoted by diam(G). The open neighborhood of a vertex v is the set \(N_G(v) = \{ u \in V \mid uv \in E \} \) and the closed neighborhood of v is \(N_G[v] = \{ v \} \cup N_G(v) \). For a set \(S \subseteq V \), its open neighborhood is the set

\[
N_G(S) = \bigcup_{v \in S} N_G(v),
\]

and its closed neighborhood is the set \(N_G[S] = N_G(S) \cup S \). If the graph G is clear from the context, we omit it in the above expressions. For example, we write \(d(u), d(u, v), N(v) \) and \(N[v] \) rather than \(d_G(u), d_G(u, v), N_G(v) \) and \(N_G[v] \), respectively.

Let X and Y be subsets of vertices in G. If \(Y \subseteq N[X] \), then we say the set X dominates the set Y in G and that the set Y is dominated by X. Furthermore, if \(Y = \{ y \} \), then we simply say that y is dominated by X rather than \(\{ y \} \) is dominated by X. Thus, if a vertex v is dominated by X, then \(N[v] \cap X \neq \emptyset \). We note that if X dominates V, then X is a dominating set in G. Hence, if X is a dominating set in G, then \(N[X] = V \). Additionally, we say that X semitotally dominates the set Y in G if each vertex in X lies within distance 2 of another vertex in X, and in turn the set Y is said to be semitotally dominated by X.

For a graph G, we define the sets \(A_{12}(G) \) and \(N_{12}(G) \) as follows:

\[
A_{12}(G) = \{ v \in V(G) \mid v \text{ is in every } \gamma_{12}(G)-\text{set} \},
\]

and

\[
N_{12}(G) = \{ v \in V(G) \mid v \text{ is in no } \gamma_{12}(G)-\text{set} \}.
\]

A rooted tree T distinguishes one vertex r called the root. For each vertex \(v \neq r \) of T, the parent of v is the neighbor of v on the unique \((r, v) \)-path, while a child of v is any other neighbor of v. We denote all the children of a vertex v by C(v). A descendant of v is a vertex \(u \neq v \) such that the unique \((r, u) \)-path contains v. Thus, every child of v is a descendant of v. A grandchild of v is a descendant of v at distance 2 from v. We let \(D(v) \) denote the set of descendants of v, and we define \(D[v] = D(v) \cup \{ v \} \). The set of leaves in T is denoted by \(L(T) \) and the set of support vertices is denoted by \(S(T) \). The maximal subtree at v is the subtree of T induced by \(D[v] \), and is denoted by \(T_v \). The set of leaves in \(T_v \) distinct from v we denote by \(L(v) \); that is, \(L(v) = D(v) \cap L(T) \). The set of branch vertices of T is denoted by \(B(T) \). For \(j \in \{ 0, 1, 2, 3, 4 \} \), we define

\[
L^j(v) = \{ u \in L(v) \mid d(u, v) \equiv j \pmod 5 \}.
\]

Furthermore, let

\[
L^1_1(v) = \{ x \in L^1(v) \mid d(v, x) = 1 \} \quad \text{and} \quad L^1_2(v) = L^1(v) \setminus L^1_1(v).
\]
We sometimes write $L^j_T(v)$ to emphasize the tree (or subtree) concerned. Additionally, we define the path from v to a leaf in $L^j_T(v)$ to be a $L^j_T(v)$-path. Given a vertex x of a tree T, we say we attach a path of length q to x if we add a vertex-disjoint path P_q on q vertices and join x to a leaf of the path P_q. In this case, we simply write that we attach P_q to x. We next define an essential support vertex in a tree.

Definition 1. A vertex v in a tree T is an essential support vertex in T if and only if v has exactly one leaf-neighbor, $v \in A_{t2}(T)$ and $N(v) \subseteq N_{t2}(T)$.

We note that if v is an essential support vertex in a tree T, then v has exactly one leaf-neighbor and $N[v] \cap D = \{v\}$ for every $\gamma_{t2}(T)$-set D.

2. Tree Pruning

In this paper, we use a method called tree pruning to characterize the sets $A_{t2}(T)$ and $N_{t2}(T)$ for an arbitrary tree T. Let T be a tree rooted at a vertex v. Suppose that T is not a star. We let $C(v)$ denote the set of children of v that belong to P_t’s that are attached to v. Furthermore, we let the descendants at distance 2 from v along P_3’s that are attached to v be denoted by $Gr(v)$ and we call them special grandchildren of v. The pruning of T is performed with respect to its root, v. If $d(u) \leq 2$ for each $u \in V(T_v \setminus \{v\}$, then let $T_v = T$. Otherwise, let u be a branch vertex at maximum distance from v (we note that $|C(u)| \geq 2$ and $d(x) \leq 2$ for each $x \in D(u)$). We identify the following types of branch vertices:

- **(T.1)** $|L^3(u)| \geq 1$.
- **(T.2)** $L^3(u) = \emptyset$, $|L^1(u)| \geq 1$ and $|L^0(u) \cup L^2(u) \cup L^4(u)| \geq 1$.
- **(T.3)** $L^3(u) = L^0(u) = L^2(u) = L^4(u) = \emptyset$ and $|L^1(u)| \geq 2$.
- **(T.4)** $L^3(u) = L^1(u) = \emptyset$ and $|L^4(u)| \geq 1$.
- **(T.5)** $L^3(u) = L^1(u) = L^4(u) = \emptyset$, $|L^2(u)| = 1$ and $|L^0(u)| \geq 1$.
- **(T.6)** $L^3(u) = L^1(u) = L^4(u) = \emptyset$ and $|L^2(u)| \geq 2$.
- **(T.7)** $L^3(u) = L^1(u) = L^4(u) = L^2(u) = \emptyset$.

We now apply the following pruning process.

(a) If u is type (T.1) or (T.2), then delete $D(u)$ and attach a P_3 to u.
(b) If u is type (T.3), then delete $D(u)$ and attach a P_4 to u.
(c) If u is type (T.4) or (T.6), then delete $D(u)$ and attach a P_4 to u.
(d) If u is type (T.5), then delete $D(u)$ and attach a P_2 to u.
(e) If u is type (T.7), then delete $D(u)$ and attach a P_5 to u.

This step of the pruning process, where all the descendants of u are deleted and a path of length 1, 2, 3, 4 or 5 is attached to u to give a tree in which u has degree 2, is called a pruning of T_v at u. Repeat the above process until a tree...
T_v is obtained with $d(u) \leq 2$ for each $u \in V(T_v) \setminus \{v\}$. The tree T_v is called the pruning of T_v. To simplify notation, we write $L^j_v(v)$ instead of $L^j_{T_v}(v)$.

3. Main Results

In this paper, we aim to establish a characterization of the set of vertices contained in all or none of the minimum semi-TD-sets in a tree T of order $n \geq 2$.

In the trivial case when $T = P_2$, we note that $A_{i2}(T) = V(T)$, while if $T = P_3$, then $A_{i2}(T) = N_{i2}(T) = \emptyset$. If T is a star $K_{1,n-1}$ with central vertex v and $n \geq 4$, then $A_{i2}(T) = \{v\}$ and $N_{i2}(T) = \emptyset$. Hence in what follows we restrict our attention to the more interesting case when $n \geq 4$ and T is not a star. We shall prove the following main results.\(^3\)

Theorem 1. Let T be a tree with order at least 4 that is not a star and is rooted at a vertex v such that $d(u) \leq 2$ for each $u \in V(T) \setminus \{v\}$. Then,

(a) $v \in A_{i2}(T)$ if and only if one of the following hold:

(i) $|L^3(v)| \geq 1$ and $|L^1(v) \cup L^3(v)| \geq 2$.

(ii) $L^3(v) = \emptyset$ and $|L^1(v)| \geq 3$.

(iii) $L^3(v) = \emptyset$ and $|L^1(v)| = 2$.

(iv) $L^3(v) = \emptyset$, $|L^1(v)| \leq 1$, $|L^1(v)| = 2$ and $|L^0(v) \cup L^2(v) \cup L^4(v)| \geq 1$.

(v) $L^2(v) = L^3(v) = L^4(v) = \emptyset$, $|L^1(v)| = |L^1(v)| = 1$ and $|L^0(v)| \geq 1$.

(b) $v \in N_{i2}(T)$ if and only if one of the following hold:

(i) $L^1(v) = L^3(v) = \emptyset$ and $|L^3(v)| \geq 1$, or

(ii) $L^1(v) = L^3(v) = L^4(v) = \emptyset$ and $|L^2(v)| \geq 2$.

Theorem 2. Let v be a vertex of a tree T with order at least 4 that is not a star. Then,

(a) $v \in A_{i2}(T)$ if and only if one of the following hold:

(i) $|L^3(v)| \geq 1$ and $|L^1(v) \cup L^3(v)| \geq 2$.

(ii) $L^3(v) = \emptyset$ and $|L^1(v)| \geq 3$.

(iii) $L^3(v) = \emptyset$ and $|L^1(v)| = 2$.

(iv) $L^3(v) = \emptyset$, $|L^1(v)| \leq 1$, $|L^1(v)| = 2$ and $|L^0(v) \cup L^2(v) \cup L^4(v)| \geq 1$.

(v) $L^2(v) = L^3(v) = L^4(v) = \emptyset$, $|L^1(v)| = |L^1(v)| = 1$ and $|L^0(v)| \geq 1$.

(b) $v \in N_{i2}(T)$ if and only if one of the following hold:

(i) $L^1(v) = L^3(v) = L^4(v) = \emptyset$ and $|L^3(v)| \geq 1$, or

(ii) $L^1(v) = L^3(v) = L^4(v) = \emptyset$ and $|L^2(v)| \geq 2$.

\(^3\)An example to illustrate Theorem 2 is presented in the appendix.
4. Preliminary Results

The semitotal domination number of a path and a cycle is determined in [3].

Lemma 3 [3]. For \(n \geq 3 \), \(\gammaTD(P_n) = \gammaTD(C_n) = \left\lceil \frac{2n}{5} \right\rceil \).

Lemma 3 immediately infers that every path \(P_n \) where \(n \equiv 0 \pmod{5} \) has a unique \(\gammaTD(P_n) \)-set. That is, if we number the vertices in \(V(P_n) \) consecutively starting at 1, then the \(\gammaTD(P_n) \)-set is the set of all vertices with numbers congruent to 2 (mod 5) and 4 (mod 5). Additionally, the paths \(P_2 \) and \(P_7 \) also have unique minimum semi-TD-sets. We state this formally as follows.

Observation 4. The paths \(P_2, P_7 \) and \(P_n \), where \(n \equiv 0 \pmod{5} \), all have unique minimum semi-TD-sets.

We shall need the following result first observed in [6].

Observation 5. If \(G \) is a connected graph that is not a star, then there is a \(\gammaTD(G) \)-set that contains no leaf of \(G \).

We proceed with the following two lemmas that will be useful when proving our main results. We use the standard notation \([k] = \{1, 2, \ldots, k\}\).

Lemma 6. Let \(T \) be a tree of order at least 3. Let \(t \) be a support vertex in \(T \) and let \(u' \) be a leaf-neighbor of \(t \). If \(T' \) is the tree obtained from \(T \) by attaching a path of length 5 to \(u' \), then \(\gammaTD(T') = \gammaTD(T) + 2 \).

Proof. Suppose \(T' \) is obtained from \(T \) by adding to \(u' \) the path \(uwxyz \) together with the edge \(uu' \). Every \(\gammaTD(T) \)-set can be extended to a semi-TD-set of \(T' \) by adding to it the vertices \(w \) and \(y \), and so \(\gammaTD(T') \leq \gammaTD(T) + 2 \). Let \(D' \) be a \(\gammaTD(T') \)-set. If \(z \in D' \), then we can replace \(z \) in \(D' \) by \(y \). Hence we may choose \(D' \) so that \(D' \cap \{y, z\} = \{y\} \). In order to semitotally dominate the vertex \(y \), we note that \(x \) or \(w \) belong to \(D' \). If \(x \in D' \), then we can replace \(x \) in \(D' \) by \(w \). Hence we may choose \(D' \) so that \(D' \cap \{x, w\} = \{w\} \). If \(u \in D' \), then we can replace \(u \) in \(D' \) by \(u' \). Hence we may choose \(D' \) so that \(u \notin D' \). If \(t \in D' \), then we can replace \(u' \) in \(D' \) with a neighbor of \(t \) different from \(u' \). If \(t \notin D' \) and \(|D' \cap N(t)| \geq 2 \), then we can replace \(u' \) in \(D' \) with the vertex \(t \). If \(t \notin D' \) and \(D' \cap N[t] = \{u'\} \), then in order to dominate the neighbors of \(t \) different from \(u' \), the set \(D' \) contains at least one vertex at distance 2 from \(t \) in \(T \), implying once again that we can replace \(u' \) in \(D' \) with the vertex \(t \). Hence, we may choose \(D' \) so that \(u' \notin D' \). In order to dominate the vertex \(u' \), we note that \(t \in D' \). Since \(D' \) is a semi-TD-set of \(T' \), the set \(D' \setminus \{w, y\} \) is necessarily a semi-TD-set of \(T \), implying that \(\gammaTD(T) \leq |D'| - 2 = \gammaTD(T') - 2 \). Consequently, \(\gammaTD(T') = \gammaTD(T) + 2 \).
Let u imply that v is an essential support vertex in T, let $v \in V(T) \setminus \{u', t\}$. If t is not an essential support vertex in T, let $v \in V(T)$. Then the following hold.

(a) $v \in \mathcal{A}_2(T)$ if and only if $v \in \mathcal{A}_2(T')$.

(b) $v \in \mathcal{N}_2(T)$ if and only if $v \in \mathcal{N}_2(T')$.

Proof. Suppose T' is obtained from T by adding to u' the path $uwxyz$ together with the edge uu'.

(a) Suppose that $v \notin \mathcal{A}_2(T)$. Let D be a $\gamma_2(T)$-set that does not contain v. Then, $D \cup \{w, y\}$ is a semi-TD-set of T' of cardinality $|D| + 2 = \gamma_2(T) + 2 = \gamma_2(T')$ by Lemma 6. Consequently, $D \cup \{w, y\}$ is a $\gamma_2(T')$-set that does not contain v, implying that $v \notin \mathcal{A}_2(T')$. Therefore, by contraposition, if $v \in \mathcal{A}_2(T')$, then $v \in \mathcal{A}_2(T)$.

Conversely, suppose that $v \in \mathcal{A}_2(T)$. Suppose to the contrary that $v \notin \mathcal{A}_2(T')$. Let D' be a $\gamma_2(T')$-set that does not contain the vertex v, and let $D = D' \cap V(T)$. If $v = u'$, then by Observation 5, there exists a $\gamma_2(T)$-set that does not contain v, contradicting our assumption that $v \in \mathcal{A}_2(T)$. Hence, $v \neq u'$. Proceeding as in the proof of Lemma 6, we can choose D' so that $D' \cap \{w, x, y, z, u\} = \{w, y\}$. Thus, $D = D' \setminus \{w, y\}$ and, by Lemma 6, $|D| = |D'| - 2 = \gamma_2(T') - 2 = \gamma_2(T)$. If $v \neq t$, then proceeding as in the proof of Lemma 6, we can additionally choose D' so that $D' \cap \{u', t\} = \{t\}$, implying that the set D is a $\gamma_2(T)$-set that does not contain v, a contradiction. Hence, $v = t$. By supposition, $v \notin D'$, and so neither neighbor of u' in T' belongs to D', implying that $u' \notin D'$.

If D is a semi-TD-set in T, then D is a $\gamma_2(T)$-set that does not contain the vertex v, contradicting our assumption that $v \in \mathcal{A}_2(T)$. Hence, D is not a semi-TD-set in T, implying that no vertex in D is at distance 1 or 2 from u'. Thus, $D \cap N[v] = \{u'\}$. In particular, we note that u' is the only leaf-neighbor of v in T.

We show next that for every $\gamma_2(T)$-set S, $N[v] \cap S = \{v\}$. For notational convenience, let T be rooted at the vertex v and let $N(v) \setminus \{u'\} = \{v_1, \ldots, v_k\}$. For $i \in [k]$, let T_i denote the maximal subtree of T rooted at v_i (and so, $T_i = T_{v_i}$) and let $D_i = D \cap V(T_i)$. We note that $v_i \notin D_i$ and that the set D_i is a semi-TD-set in T_i for all $i \in [k]$. Suppose that there exists a $\gamma_2(T)$-set, S, such that $|N[v] \cap S| \geq 2$. Since $v \in \mathcal{A}_2(T)$, we note that $v \in S$. If $u' \in S$, we can simply replace u' in S with a neighbor of v that is not a leaf. Renaming the children of v if necessary, we may therefore assume that $v_1 \in S$. Let $S_1 = S \cap V(T_1)$. Since the set D_1 contains a vertex at distance 2 from v in T, we note that the set $(S \setminus S_1) \cup D_1$ is a semi-TD-set of T, implying that $|S| = \gamma_2(T) \leq |S| - |S_1| + |D_1|$,
or, equivalently, $|S_1| \leq |D_1|$. We now consider the set $S^* = (D\setminus D_1) \cup S_1$. Since v' and v_1 are at distance 2 apart in T, the set S^* is a semi-TD-set of T, implying that $\gamma_{12}(T) \leq |S^*| \leq |D| - |D_1| + |S_1| \leq |D| = \gamma_{12}(T)$. Consequently, $|S^*| = \gamma_{12}(T)$ and S^* is a $\gamma_{12}(T)$-set that does not contain the vertex v, a contradiction. Therefore, for every $\gamma_{12}(T)$-set S, we have $N[v] \cap S = \{v\}$. Moreover, this result together with our earlier observation that u' is the only leaf-neighbor of v in T imply that v is an essential support vertex in T, a contradiction (recalling that here $v = t$). Hence, $v \in A_{t_2}(T')$. This completes the proof of part (a).

(b) Suppose that $v \in \hat{N}_{t_2}(T')$. We show that $v \in \hat{N}_{t_2}(T)$. Suppose to the contrary that there exists a $\gamma_{12}(T)$-set, D, that contains the vertex v. Then, $D \cup \{w, y\}$ is a semi-TD-set of T' of cardinality $|D| + 2 = \gamma_{12}(T) + 2 = \gamma_{12}(T')$. Consequently, $D \cup \{w, y\}$ is a $\gamma_{12}(T')$-set that contains v, a contradiction. Therefore, $v \in \hat{N}_{t_2}(T)$.

Conversely, suppose that $v \in \hat{N}_{t_2}(T)$. We show that $v \in \hat{N}_{t_2}(T')$. Suppose to the contrary that there exists a $\gamma_{12}(T')$-set, D', that contains the vertex v. Let $D = D' \cap V(T)$. Proceeding as in the proof of Lemma 6, we can choose D' so that $D' \cap \{w, x, y, z, u\} = \{w, y\}$. Thus, $D = D' \setminus \{w, y\}$. If $v \neq u'$, then proceeding as in the proof of Lemma 6, we can further choose D' so that $D' \cap \{u', t\} = \{t\}$, implying that the set D is a $\gamma_{12}(T)$-set containing v, a contradiction. Hence, $v = u'$. If D is a semi-TD-set in T, then the set D is a $\gamma_{12}(T)$-set containing v, a contradiction. Hence, D is not a semi-TD-set in T, implying that no vertex in D is at distance 1 or 2 from u'. Thus, $D \cap N[t] = \{u'\}$. In particular, this implies that u' is the only leaf-neighbor of t in T. An analogous proof to that employed in the proof of part (a) shows the vertex t is an essential support vertex in T, contradicting the fact that in this case $v = u'$. Therefore, $v \in \hat{N}_{t_2}(T')$.

5. Proof of Theorem 1

Proof. Let T be a tree with order at least 4 that is not a star and is rooted at a vertex v such that $d(u) \leq 2$ for each $u \in V(T) \setminus \{v\}$. For each $w \in L(v)$ such that $d_T(v, w) \geq 6$, let T' be the tree obtained by replacing the (v, w)-path in T with a (v, w)-path of length j, $j \in \{5, 6, 2, 3, 4\}$ if $w \in L'(v), i \in \{0, 1, 2, 3, 4\}$, respectively. By repeated applications of Lemma 7, $v \in A_{t_2}(T) (\hat{N}_{t_2}(T), respectively) if and only if $v \in A_{t_2}(T') (\hat{N}_{t_2}(T'), respectively). Hence, in what follows, we assume $T = T'$. If v is a leaf of T, then by our earlier assumptions, T is a path P_n where $n \in \{4, 5, 6, 7\}$. If $n \in \{4, 6\}$, then $v \notin A_{t_2}(T) \cup \hat{N}_{t_2}(T)$. If $n \in \{5, 7\}$, then by Observation 4, $v \in \hat{N}_{t_2}(T)$. Hence, we may assume that v is not a leaf in T. Let D be an arbitrary $\gamma_{12}(T)$-set and let W be the set of vertices at distance 3 from a leaf of some $L_3^1(v)$-path. We proceed further with a series of claims.
Claim A. If $|L_1^1(v)| \geq 2$, then $v \in A_{l2}(T)$.

Proof. Suppose $|L_1^1(v)| \geq 2$. Thus, v is a strong support vertex in T and therefore has at least two leaf-neighbors. Moreover, $|L_0^0(v) \cup L_1^1(v) \cup L_2^2(v) \cup L_3^3(v) \cup L_4^4(v)| \geq 1$ since T is not a star. Let w be a neighbor of v that is not a leaf. Suppose, to the contrary, that $v \notin A_{l2}(T)$. Let S be a $\gamma_{l2}(T)$-set that does not contain the vertex v. The set S contains all leaf-neighbors of v. Since $N[w] \cap S \neq \emptyset$, we note that v is within distance 2 from at least one vertex in $N[w] \cap S$. Further, no vertex in $N[w] \cap S$ is a leaf-neighbor of v. Replacing the leaf-neighbors of v in S with the vertex v produces a semi-TD-set in T of cardinality less than $|S| = \gamma_{l2}(T)$, a contradiction. Hence, $v \in A_{l2}(T)$.

By Claim A, we may assume that $|L_1^1(v)| \leq 1$.

Claim B. If $L(v) = L_0^0(v)$, then $v \notin A_{l2}(T) \cup \mathcal{N}_{l2}(T)$.

Proof. Suppose $L(v) = L_0^0(v)$. Then, $L_1^1(v) \cup L_2^2(v) \cup L_3^3(v) \cup L_4^4(v) = \emptyset$. Let $S = \text{Gr}(v) \cup S(T) \cup \{v\}$. The set S is a semi-TD-set of T, and so $\gamma_{l2}(T) \leq |S| = 2|L_0^0(v)| + 1$. Recall that D is an arbitrary $\gamma_{l2}(T)$-set. If $vv_1v_2v_3v_4v_5$ is a path emanating from v in T, then v_5 is a leaf in T and $|D \cap \{v_2, v_3, v_4, v_5\}| \geq 2$, implying that the set D contains at least two vertices from each path of order 5 attached to v and at least one vertex in $N[v]$. Thus, $\gamma_{l2}(T) = |D| \geq 2|L_0^0(v)| + 1 = |S| \geq \gamma_{l2}(T)$. Consequently, we must have equality throughout this inequality chain. In particular, $|S| = \gamma_{l2}(T) = 2|L_0^0(v)| + 1$ and S is a $\gamma_{l2}(T)$-set. Replacing v in S with an arbitrary neighbor of v produces a $\gamma_{l2}(T)$-set not containing v. Hence, $v \notin A_{l2}(T) \cup \mathcal{N}_{l2}(T)$.

By Claim B, we may assume that $L(v) \neq L_0^0(v)$.

Claim C. If $L(v) = L_0^0(v) \cup L_1^1(v)$ where $|L_1^1(v)| = 1$ and $|L_0^0(v)| \geq 1$, then v is an essential support vertex in T. In particular, $v \in A_{l2}(T)$.

Proof. Suppose $L(v) = L_0^0(v) \cup L_1^1(v)$ where $|L_1^1(v)| = 1$ and $|L_0^0(v)| \geq k \geq 1$. In this case, $L_2^2(v) \cup L_3^3(v) \cup L_4^4(v) = \emptyset$. Let $L_1^1(v) = \{u\}$. We note that u is the only leaf-neighbor of v in T. We show that $v \in A_{l2}(T)$ and $N(v) \subseteq \mathcal{N}_{l2}(T)$, implying that v is an essential support vertex of T. Let $S = \text{Gr}(v) \cup S(T) \cup \{v\}$. The set S is a semi-TD-set of T, and so $\gamma_{l2}(T) \leq |S| = 2k + 1$. If $vv_1v_2v_3v_4v_5$ is a path emanating from v in T, then v_5 is a leaf in T and $|D \cap \{v_2, v_3, v_4, v_5\}| \geq 2$. In particular, the set D contains at least two vertices from each path of order 5 attached to v. Further, D contains at least one of u and v. Thus, $\gamma_{l2}(T) = |D| \geq 2k + 1 = |S| \geq \gamma_{l2}(T)$. Consequently, we must have equality throughout this inequality chain. In particular, $|S| = \gamma_{l2}(T) = 2k + 1$, implying that S is a $\gamma_{l2}(T)$-set.
Suppose that there exists a $\gamma_{\ell 2}(T)$-set, D', that does not contain v. In this case, $v \in D'$. Further, in order to semitotally dominate u, we note that $|(D' \setminus \{u\}) \cap N(v)| \geq 1$. This, however, implies that along one of P_v’s attached to v in T, at least three of its vertices belong to D', which in turn implies that $|D'| \geq 2k + 2 > |S|$, a contradiction. Hence, $v \in \mathcal{A}_{\ell 2}(T)$. As observed earlier, if $vv_1v_2v_3v_4v_5$ is a path emanating from v in T, then $|D \cap \{v_2, v_3, v_4, v_5\}| \geq 2$. Further, since $v \in \mathcal{A}_{\ell 2}(T)$, we note that $v \in D$. Thus if $|D \cap N(v)| \geq 1$, then $\gamma_{\ell 2}(T) = |D| \geq 2k + 2$, a contradiction. Therefore, $N(v) \cap D = \emptyset$, implying that $N(v) \subseteq \mathcal{N}_{\ell 2}(T)$. Thus, v is an essential support vertex in T.

By our earlier assumptions, $|L_1^1(v)| \leq 1$ and $L(v) \neq L_0^0(v)$. By Claim C, we may assume that $L(v) \neq L_0^0(v) \cup L_1^1(v)$.

Claim D. Suppose $|L^3(v)| \geq 1$. Then the following hold.

(a) If $|L^3(v)| \geq 2$, then $v \in \mathcal{A}_{\ell 2}(T)$.

(b) If $|L^3(v)| = 1$ and $|L^1(v)| \geq 1$, then $v \in \mathcal{A}_{\ell 2}(T)$.

(c) If $|L^3(v)| = 1$, $L^1(v) = \emptyset$ and $|L_0^0(v) \cup L^2(v) \cup L^4(v)| \geq 1$, then $v \notin \mathcal{A}_{\ell 2}(T) \cup \mathcal{N}_{\ell 2}(T)$.

Proof. (a) Suppose $|L^3(v)| \geq 2$. Let $\{u_3, v_3\} \subseteq L^3(v)$ and let $vu_1u_2u_3$ and $vv_1v_2v_3$ be the (v, u_3)-path and the (v, v_3)-path. By our earlier assumptions, the vertex v has at most one leaf-neighbor. Further, we remark that there may exist leaves at distance 2, 4, 5 and 6 from v in T. The set $S(T) \cup C^{(4)}(v) \cup \text{Gr}(v) \cup W \cup \{v\}$ is a semi-TD-set of cardinality $2(|L_0^0(v)| + |L_2^2(v)| + |L^4(v)|) + |L^2(v)| + |L^3(v)| + 1$, and so $\gamma_{\ell 2}(T) \leq 2(|L_0^0(v)| + |L_2^2(v)| + |L^4(v)|) + |L^2(v)| + |L^3(v)| + 1$.

Suppose D does not contain v. Then, D will contain at least two vertices from each $L_0^0(v)$-path, at least three vertices from each $L_3^3(v)$-path, at least one vertex from each $L_2^2(v)$-path, at least two vertices from each $L_4^4(v)$-path, and at least two vertices from each $L_4^4(v)$-path. Further, if $|L_1^1(v)| = 1$, then D contains the leaf-neighbor of v. If $u_3 \in D$, we can replace u_3 in D with u_2. Hence, we may choose D so that $D \cap \{u_1, u_2, u_3\} = \{u_1, u_2\}$. This implies that $\gamma_{\ell 2}(T) = |D| \geq 2(|L_0^0(v)| + |L_3^3(v)| + |L_2^2(v)| + |L^4(v)| + 2L^3(v) + |L_1^1(v)| \geq 2(|L_0^0(v)| + L_2^2(v) + L^3(v) + |L^3(v)| + |L^2(v)| + |L^4(v)|) + 2L^3(v) + 2L^2(v) > 2(|L_0^0(v)| + |L_2^2(v)| + |L^4(v)|) + |L^2(v)| + |L^3(v)| + 1$, a contradiction. Hence, $v \in D$. Since D is an arbitrary $\gamma_{\ell 2}(T)$-set, we deduce that $v \in \mathcal{A}_{\ell 2}(T)$.

(b) Suppose that $|L^3(v)| = 1$ and $|L^1(v)| \geq 1$. Let $L^3(v) = \{u_3\}$ and let $vu_1u_2u_3$ be the (v, u_3)-path. Suppose firstly that $L_1^1(v) = \emptyset$, and so $L^1(v) = L_2^2(v)$. In this case, the set $S(T) \cup C^{(4)}(v) \cup \text{Gr}(v) \cup W \cup \{v\}$ is a semi-TD-set of cardinality $2(|L_0^0(v)| + |L^1(v)| + |L^4(v)|) + |L^2(v)| + 2$, and so $\gamma_{\ell 2}(T) \leq 2(|L_0^0(v)| + |L^1(v)| + |L^4(v)|) + |L^2(v)| + 2$. Suppose D does not contain v. Then, D contains at least two vertices on the path $u_1u_2u_3$ and at least three vertices from
each \(L_2^1(v)\)-path. Further, \(D\) contains at least two vertices from each \(L^0(v)\)-path, two vertices from each \(L^4(v)\)-path and one vertex from each \(L^2(v)\)-path. However, this implies that \(\gamma_2(T) = |D| \geq 2(|L^0(v)| + |L^4(v)|) + 3|L_1^1(v)| + |L^2(v)| + 2 > 2(|L^0(v)| + |L^1(v)| + |L^4(v)|) + |L^2(v)| + 2\), a contradiction. Hence, \(v \in D\), and since \(D\) is an arbitrary \(\gamma_2(T)\)-set, \(v \in A_2(T)\).

Suppose secondly that \(|L_1^1(v)| = 1\). Let \(L_1^1(v) = \{u\}\). In this case, the set \(S(T) \cup C^4(v) \cup \text{Gr}(v) \cup W \cup \{v\}\) is a semi-TD-set of cardinality \(2(|L^0(v)| + |L_1^1(v)| + |L^4(v)|) + |L^2(v)| + 2\), and so \(\gamma_2(T) \leq 2(|L^0(v)| + |L_1^1(v)| + |L^4(v)|) + |L^2(v)| + 2\). Suppose \(D\) does not contain \(v\). Then, \(u \in D\) and \(D\) contains at least two vertices on the path \(u_1u_2u_3\) and at least three vertices from each \(L_2^1(v)\)-path. The number of vertices needed from each \(L^0(v)\)-path, \(L^2(v)\)-path and \(L^4(v)\)-path remains unchanged. However, this implies that \(\gamma_2(T) = |D| \geq 2(|L^0(v)| + |L^4(v)|) + 3L_2^1(v) + |L^2(v)| + 2L_4^4(v) + |L_1^1(v)| = 2(|L^0(v)| + |L^4(v)|) + 3L_2^1(v) + |L^2(v)| + 3 > 2(|L^0(v)| + |L_2^1(v)| + |L^4(v)|) + |L^2(v)| + 2\), a contradiction. Hence, \(v \in D\), and since \(D\) is an arbitrary \(\gamma_2(T)\)-set, \(v \in A_2(T)\).

(c) Suppose that \(|L^3(v)| = 1\), \(L^1(v) = \emptyset\) and \(|L^0(v) \cup L^2(v) \cup L^4(v)| \geq 1\). Let \(L^3(v) = \{u_3\}\) and let \(v u_1u_2u_3\) be the \((v, u_3)\)-path. Every leaf of \(T\), different from \(u_3\), is at distance 2, 4 or 5 from \(v\), and so \(L(v) \setminus \{u_3\} = L^0(v) \cup L^2(v) \cup L^4(v)\). By Observation 5, there is a \(\gamma_2(T)\)-set, say \(D'\), that contains no leaf of \(T\), implying that \(S(T) \subseteq D'\). The set \(D'\) contains at least two vertices from each \(L^0(v)\)-path and at least two vertices from each \(L^4(v)\)-path. Further, \(D'\) contains at least one vertex from each \(L^2(v)\)-path and at least two vertices from the \((v, u_3)\)-path. This implies that \(\gamma_2(T) \geq 2(|L^0(v)| + |L^4(v)|) + |L^2(v)| + 2\). On the other hand, the set of children of \(v\) that do not belong to any \(L^0(v)\)-path, together with the set \(S(T) \cup \text{Gr}(v)\) form a semi-TD-set, say \(S\), of \(T\) of cardinality \(2(|L^0(v)| + |L_2^1(v)| + |L^4(v)|) + |L^2(v)| + 1\), and so \(\gamma_2(T) \leq 2(|L^0(v)| + |L_2^1(v)| + |L^4(v)|) + |L^2(v)| + 1\). Consequently, \(\gamma_2(T) = 2(|L^0(v)| + |L^4(v)|) + |L^2(v)| + 2\). Moreover, \(S\) and \((S \setminus \{u_1\}) \cup \{v\}\) are \(\gamma_2(T)\)-sets, implying that \(v \notin A_2(T) \cap N_2(T)\).

By Claim D, we may assume that \(L^3(v) = \emptyset\).

Claim E. If \(|L^1(v)| \geq 3\), then \(v \in A_2(T)\).

Proof. Suppose, firstly, that \(|L^0(v) \cup L^2(v) \cup L^4(v)| \neq \emptyset\). The vertex set \(S(T) \cup C^4(v) \cup \text{Gr}(v) \cup W \cup \{v\}\) is a semi-TD-set of cardinality \(2(|L^0(v)| + |L_2^1(v)| + |L^4(v)|) + |L^2(v)| + 1\), and so \(\gamma_2(T) \leq 2(|L^0(v)| + |L_2^1(v)| + |L^4(v)|) + |L^2(v)| + 1\). Suppose \(D\) does not contain \(v\). If \(L_1^1(v) = \emptyset\), then every leaf is at distance 2, 4, 5 or 6 from \(v\) in \(T\) and \(L^4(v) = L_2^1(v)\). In this case, \(D\) contains at least three vertices from each \(L_2^1(v)\)-path, two vertices from each \(L^0(v)\)-path, two vertices from each \(L^4(v)\)-path and one vertex from each \(L^2(v)\)-path. Hence, \(\gamma_2(T) = |D| > 3|L^1(v)| + 2(|L^0(v) + L^4(v)|) + |L^2(v)| > 2(|L^0(v)| + |L^1(v)| + |L^4(v)|) + |L^2(v)| + 1\), a contradiction. Therefore, \(L_1^1(v) \neq \emptyset\). Let \(L_1^1(v) = \{u\}\). Every leaf
is at distance 1, 2, 4, 5 or 6 from \(v \) in \(T \). In this case, \(D \) contains the leaf \(u \), implying that \(\gamma_2(T) = |D| > 3|L_1^0(v)| + 2(|L_0^0(v)| + |L_1^1(v)| + |L_1^2(v)| + |L_1^4(v)| > 2(|L_0^0(v)| + |L_1^1(v)| + |L_1^2(v)| + |L_1^4(v)| + 1, a contradiction. Hence, \(v \in D \), and since \(D \) is an arbitrary \(\gamma_2(T) \)-set, \(v \in A_{\gamma_2(T)} \).

Suppose, secondly, that \(L_0^0(v) \cup L_1^2(v) \cup L_4^0(v) = \emptyset \). Thus, \(L(v) = L_1^1(v) \). Let \(u_6 \in L_1^1(v) \) and let \(vu_1u_2u_3u_4u_5u_6 \) be the \((v, u_6)\)-path. The vertex set \(S(T) \cup W \cup \{u_1, v\} \) is a semi-TD-set of cardinality \(2|L_2^1(v)| + 2 \), and so \(\gamma_2(T) \leq 2|L_2^1(v)| + 2 \). Suppose \(D \) does not contain \(v \). If \(L_1^1(v) = \emptyset \), then every leaf is at distance 6 from \(v \) in \(T \) and \(L(v) = L_1^1(v) = L_2^1(v) \). In this case, \(D \) contains at least three vertices from each \(L_1^1(v) \)-path. Hence, \(\gamma_2(T) = |D| \geq 3|L_1^1(v)| > 2|L_1^1(v)| + 2 \), a contradiction. If \(L_1^1(v) \neq \emptyset \), then letting \(L_1^1(v) = \{u\} \), every leaf in \(L_1^1(v) \) is at distance 6 from \(v \) in \(T \). In this case, \(D \) contains at least three vertices from each \(L_1^1(v) \)-path and the leaf \(u \). Hence, \(\gamma_2(T) = |D| \geq 3|L_2^1(v)| + 1 > 2|L_1^1(v)| + 2 \), a contradiction. Hence, \(v \in D \), and since \(D \) is an arbitrary \(\gamma_2(T) \)-set, \(v \in A_{\gamma_2(T)} \).

By Claim E, we may assume that \(|L_1^1(v)| \leq 2 \).

Claim F. Suppose \(|L_1^1(v)| = 2 \). Then the following hold.

(a) If \(|L_0^0(v) \cup L_2^1(v) \cup L_4^0(v)| \geq 1 \), then \(v \in A_{\gamma_2(T)} \).

(b) If \(L_0^0(v) = L_2^1(v) = L_4^0(v) = \emptyset \), then \(v \notin A_{\gamma_2(T)} \cup N_{\gamma_2(T)} \).

Proof. (a) Suppose \(|L_0^0(v) \cup L_2^1(v) \cup L_4^0(v)| \geq 1 \). The vertex set \(S(T) \cup C(v) \cup Gr(v) \cup W \cup \{v\} \) is a semi-TD-set of cardinality \(2(|L_0^0(v)| + |L_2^1(v)| + |L_4^0(v)|) + |L_2^2(v)| + 1 \), and so \(\gamma_2(T) \leq 2(|L_0^0(v)| + |L_2^1(v)| + |L_4^0(v)| + |L_2^2(v)| + 1 \). Suppose \(D \) does not contain \(v \). If \(L_1^1(v) = \emptyset \), then \(L^1(v) = L_2^1(v) \) and \(|L_2^1(v)| = 2 \). In this case, \(D \) contains at least three vertices from each \(L_2^1(v) \)-path, two vertices from each \(L_0^0(v) \)-path, two vertices from each \(L_2^1(v) \)-path and one vertex from each \(L_2^1(v) \)-path. Hence, \(\gamma_2(T) = |D| \geq 2(|L_0^0(v) + |L_2^1(v)|) + |L_2^2(v)| + 6 > 2(|L_0^0(v) + |L_2^1(v)|) + |L_2^2(v)| + 1 = 2(|L_0^0(v)| + |L_2^1(v)| + |L_4^0(v)| + |L_2^2(v)| + 1 \), a contradiction. Therefore, \(L_1^1(v) \neq \emptyset \). Let \(L_1^1(v) = \{u\} \) and let \(L_2^1(v) = \{u_6\} \). Additionally, let \(vu_1u_2u_3u_4u_5u_6 \) be the \((v, u_6)\)-path. In this case, \(D \) contains the leaf \(u \) and at least three vertices from the \(\{u_1, u_6\} \)-path, at least one vertex from each \(L_2^1(v) \)-path and at least two vertices from each \(L_0^0(v) \)-path and \(L_2^1(v) \)-path, implying that \(\gamma_2(T) = |D| \geq 2(|L_0^0(v) + |L_4^0(v)|) + |L_2^2(v)| + 4 > 2(|L_0^0(v)| + |L_2^1(v)| + |L_4^0(v)| + |L_2^1(v)| + |L_2^2(v)| + 1 \), a contradiction. Hence, \(v \in D \), and since \(D \) is an arbitrary \(\gamma_2(T) \)-set, \(v \in A_{\gamma_2(T)} \).

(b) Suppose \(L_0^0(v) = L_2^1(v) = L_4^0(v) = \emptyset \). Let \(u_6 \in L_2^1(v) \) and let the path \(vu_1u_2u_3u_4u_5u_6 \) be the \((v, u_6)\)-path. Suppose firstly that \(L_1^1(v) = \emptyset \). Then, \(L^1(v) = L_2^1(v) \). Let \(v_6 \in L_2^1(v) \) \(\{u_6\} \) and let \(vu_1u_2u_3u_4u_5v_6 \) be the \((v, v_6)\)-path. In this case, \(T = P_{13} \) and \(\gamma_2(T) = 6 \). Further, the set \(S = \{u_1, u_3, u_5, v_1, v_3, v_5\} \)
is a $\gamma_2(T)$-set not containing v, while $(S \setminus \{u_1\}) \cup \{v\}$ is a $\gamma_2(T)$-set containing v. Hence, $v \notin A_2(T) \cup N_2(T)$. Suppose secondly that $L_1^1(v) \neq \emptyset$ and let $L_1^1(v) = \{u\}$. In this case, $T = P_8$ and $\gamma_2(T) = 4$. Further, the set $S = \{u, u_1, u_3, u_5\}$ is a $\gamma_2(T)$-set not containing v. Moreover, $(S \setminus \{u_1\}) \cup \{v\}$ is a $\gamma_2(T)$-set containing v. Hence, once again $v \notin A_2(T) \cup N_2(T)$.

By Claim F, we may assume that $|L_1^1(v)| \leq 1$.

Claim G. If $|L_1^1(v)| = 1$, then $v \notin A_2(T) \cup N_2(T)$.

Proof. Suppose firstly that $L_2^2(v) = L_4^4(v) = \emptyset$. By our earlier assumptions, the vertex v is not a leaf in T, $L_3^3(v) = \emptyset$ and $L_2(v) \neq L_0^0(v) \cup L_1^1(v)$, implying that $|L_0^0(v)| \geq 1$ and $L_2(v) = L_2^2(v)$. Let $L_2^1(v) = \{u_6\}$ and let $vu_1u_2u_3u_4u_5u_6$ be the (v, u_6)-path. Every semi-TD-set of T contains at least two vertices from each $L_0^0(v)$-path and at least three vertices from the (v, u_6)-path, and so $\gamma_2(T) \geq 2|L_0^0(v)| + 3$. However, the set $S = S(T) \cup Gr(v) \cup \{v, u_3\}$ is a semi-TD-set of T of cardinality $2|L_0^0(v)| + 3$, and so $\gamma_2(T) \leq |S| = 2|L_0^0(v)| + 3$. Consequently, $\gamma_2(T) = 2|L_0^0(v)| + 3$ and S is a $\gamma_2(T)$-set containing v. Moreover, $S' = (S \setminus \{v\}) \cup \{u_1\}$ is a $\gamma_2(T)$-set containing v. Hence, $v \notin A_2(T) \cup N_2(T)$.

Suppose secondly that $|L_2^2(v) \cup L_4^4(v)| \geq 1$. The vertex set $S = S(T) \cup C_4^4(v) \cup Gr(v) \cup W \cup \{v\}$ is a semi-TD-set of T of cardinality $2(|L_0^0(v)| + |L_1^1(v)| + |L_4^4(v)| + |L_2^2(v)|) + 1$, and so $\gamma_2(T) \leq 2(|L_0^0(v)| + |L_1^1(v)| + |L_4^4(v)|) + |L_2^2(v)| + 1$. Suppose $L_1^1(v) = \emptyset$, and so $L_1^1(v) = L_2^2(v)$ and $L_1^1(v) = 1$. In this case, let $L_1^1(v) = \{u_6\}$ and let $vu_1u_2u_3u_4u_5u_6$ be the (v, u_6)-path. The set D contains at least three vertices from the (v, u_6)-path, at least one vertex from each $L_2^2(v)$-path and at least two vertices from each $L_0^0(v)$-path and $L_4^4(v)$-path, implying that $\gamma_2(T) = |D| \geq 2(|L_0^0(v)| + |L_4^4(v)|) + |L_2^2(v)| + 1 = 2(|L_0^0(v)| + |L_2^2(v)| + |L_4^4(v)|) + |L_2^2(v)| + 1$. Consequently, $\gamma_2(T) = 2(|L_0^0(v)| + |L_4^4(v)|) + |L_2^2(v)| + 3$ and S is a $\gamma_2(T)$-set containing v. Moreover, the set $(S \setminus \{v\}) \cup \{u_1\}$ is a $\gamma_2(T)$-set that does not contain v. Hence, $v \notin A_2(T) \cup N_2(T)$. Suppose next that $L_1^1(v) = L_2^2(v) = \{u\}$. In this case, $L_2^2(v) = \emptyset$ and the set D contains at least one of u and v, at least one vertex from each $L_2^2(v)$-path and at least two vertices from each $L_0^0(v)$-path and $L_4^4(v)$-path, implying that $\gamma_2(T) = |D| \geq 2(|L_0^0(v)| + |L_4^4(v)|) + |L_2^2(v)| + 1 = 2(|L_0^0(v)| + |L_2^2(v)| + |L_4^4(v)|) + |L_2^2(v)| + 1$. Consequently, $\gamma_2(T) = 2(|L_0^0(v)| + |L_4^4(v)|) + |L_2^2(v)| + 1$ and S is a $\gamma_2(T)$-set containing v. Moreover, the set $(S \setminus \{v\}) \cup \{u\}$ is a $\gamma_2(T)$-set that does not contain v. Hence, once again $v \notin A_2(T) \cup N_2(T)$.

By Claim G, we may assume that $L_1^1(v) = \emptyset$.

Claim H. Suppose $L_1^1(v) = \emptyset$. Then the following hold.

(a) If $|L_4^4(v)| \geq 1$, then $v \in N_2(T)$.

(b) If $|L_2^2(v)| = 1$ and $L_4^4(v) = \emptyset$, then $v \notin A_2(T) \cup N_2(T)$.

(c) If $|L^2(v)| \geq 2$ and $L^4(v) = \emptyset$, then $v \in N_{t2}(T)$.

Proof. (a) Suppose $|L^4(v)| \geq 1$. Every leaf is at distance 2, 4 or 5 from v in T. The set D contains at least one vertex from each $L^2(v)$-path and at least two vertices from each $L^0(v)$-path and each $L^4(v)$-path. Thus, $\gamma_{t2}(T) = |D| \geq 2(|L^0(v)| + |L^4(v)|) + |L^2(v)|$ with strict inequality if $v \in D$. The set $C^{(4)}(v) \cup S(T) \cup \text{Gr}(v)$ is a semi-TD-set of T of cardinality $2(|L^0(v)| + |L^4(v)|) + |L^2(v)|$, and so $\gamma_{t2}(T) \leq 2(|L^0(v)| + |L^4(v)|) + |L^2(v)|$. Consequently, $\gamma_{t2}(T) = |D| = 2(|L^0(v)| + |L^4(v)|) + |L^2(v)|$ and $v \notin D$. Since D is an arbitrary $\gamma_{t2}(T)$-set, $v \in N_{t2}(T)$.

(b) Suppose $|L^2(v)| = 1$ and $L^4(v) = \emptyset$. Let $L^2(v) = \{u_2\}$ and let uu_1u_2 be the (v, u_2)-path. Then, $L^0(v) = L(v) \setminus \{u_2\}$ and $S = S(T) \cup \text{Gr}(v) \cup \{v, u_1\}$ is a semi-TD-set of cardinality $2|L^0(v)| + 2$, and so $\gamma_{t2}(T) \leq |S| = 2|L^0(v)| + 2$. The set D contains at least two vertices from the set $N[v] \setminus \{u_2\}$ and at least two vertices not in $N[v]$ from each $L^0(v)$-path. Thus, $\gamma_{t2}(T) = |D| \geq 2|L^0(v)| + 2$. Consequently, $\gamma_{t2}(T) = 2|L^0(v)| + 2$ and S is a $\gamma_{t2}(T)$-set that contains the vertex v. Moreover, the set $(S \setminus \{v\}) \cup \{u_2\}$ is a $\gamma_{t2}(T)$-set that does not contain v. Hence, $v \notin A_{t2}(T) \cup N_{t2}(T)$.

(c) Suppose that $|L^2(v)| \geq 2$ and $L^4(v) = \emptyset$. Every leaf is at distance 2 or 5 from v in T. The set D contains at least one vertex from each $L^2(v)$-path and at least two vertices from each $L^0(v)$-path. Thus, $\gamma_{t2}(T) = |D| \geq 2|L^0(v)| + |L^2(v)|$ with strict inequality if $v \in D$. The set $S(T) \cup \text{Gr}(v)$ is a semi-TD-set of cardinality $2|L^0(v)| + |L^2(v)|$, and so $\gamma_{t2}(T) \leq 2|L^0(v)| + |L^2(v)|$. Consequently, $\gamma_{t2}(T) = |D| = 2|L^0(v)| + |L^2(v)|$ and $v \notin D$. Since D is an arbitrary $\gamma_{t2}(T)$-set, $v \in N_{t2}(T)$.

Theorem 1 now follows from Claims A, B, C, D, E, F, G and H.

6. **Proof of Theorem 2**

Let T be a rooted tree that is not a star with root v that contains at least one branch vertex different from v. We shall adopt the following notation. Let u be a branch vertex at maximum distance from v and let $k_0 = |L^0(u)|$, $k_1 = |L^1(u)|$, $k_2 = |L^2(u)|$, $k_3 = |L^3(u)|$ and $k_4 = |L^4(u)|$. Let w be the parent of u (possibly, $v = w$). Let T' be the tree obtained from T by applying the following operations.

O_1: For $k_3 \geq 1$, let T' be the tree obtained from T by deleting $D(u)$ and attaching a path P_3 to u.

O_2: For $k_3 = 0$, $k_1 \geq 1$ and $k_0 + k_2 + k_4 \geq 1$, let T' be the tree obtained from T by deleting $D(u)$ and attaching a path P_3 to u.

O_3: For $k_0 = k_2 = k_3 = k_4 = 0$ and $k_1 \geq 2$, let T' be the tree obtained from T by deleting $D(u)$ and attaching a path P_1 to u.

O_4: For $k_1 = k_3 = 0$ and $k_4 \geq 1$, let T' be the tree obtained from T by deleting $D(u)$ and attaching a path P_4 to u.

O_5: For $k_1 = k_3 = k_4 = 0$, $k_2 = 1$ and $k_0 \geq 1$, let T' be the tree obtained from T by deleting $D(u)$ and attaching a path P_5 to u.

O_6: For $k_1 = k_3 = k_4 = 0$ and $k_2 \geq 2$, let T' be the tree obtained from T by deleting $D(u)$ and attaching a path P_6 to u.

O_7: For $k_1 = k_2 = k_3 = k_4 = 0$, let T' be the tree obtained from T by deleting $D(u)$ and attaching a path P_7 to u.

Our next result, namely Theorem 2, establishes a key result relating the semitotal domination numbers of the trees T and T'. Theorem 2 follows immediately from Theorem 1 and Theorem 8. We use the standard notation $[k] = \{1, 2, \ldots, k\}$ once again.

Theorem 8. Let T be a tree with order at least 4 that is not a star and is rooted at a vertex v such that T contains at least one branch vertex u different from v and let T' be the tree defined immediately before the statement of the theorem. Let w be the parent of u (possibly, $w = v$). Suppose that T' is obtained from T by applying operation O_i for some $i \in [7]$. Then,

$$\gamma_{12}(T') = \begin{cases}
\gamma_{12}(T) - 2k_0 - k_2 - k_3 - 2k_4 + 1 & \text{for } i = 1, \\
\gamma_{12}(T) - 2k_0 - k_2 - 2k_4 + 1 & \text{for } i = 2, \\
\gamma_{12}(T) & \text{for } i = 3, \\
\gamma_{12}(T) - 2k_0 - k_2 - 2k_4 + 2 & \text{for } i = 4, \\
\gamma_{12}(T) - 2k_0 & \text{for } i = 5, \\
\gamma_{12}(T) - 2k_0 - k_2 + 2 & \text{for } i = 6, \\
\gamma_{12}(T) - 2k_0 + 2 & \text{for } i = 7.
\end{cases}$$

Further, in all cases, the following properties P_A and P_N hold:

P_A: $v \in A_{12}(T)$ if and only if $v \in A_{12}(T')$.

P_N: $v \in N_{12}(T)$ if and only if $v \in N_{12}(T')$.

Proof. For each vertex $x \in L(u)$ replace the (u, x)-path in T with a (u, x)-path of length j, where $j \in \{5, 1, 2, 3, 4\}$ if $x \in L^i(u)$ when $i \in \{0, 1, 2, 3, 4\}$, respectively. Let T'' denote the resulting tree. By repeated applications of Lemma 7, we deduce that $v \in A_{12}(T)$ ($N_{12}(T)$, respectively) if and only if $v \in A_{12}(T'')$ ($N_{12}(T'')$, respectively). Hence, we assume $T = T''$. With this assumption, every leaf of T that is a descendant of u is within distance 5 from u. We proceed further with a series of five claims.
Claim I. Suppose \(k_3 \geq 1 \). Then, \(T' \) is obtained from \(T \) by operation \(O_1 \) and \(\gamma_{L_2}(T') = \gamma_{L_2}(T) - 2k_0 - k_2 - k_3 - 2k_4 + 1 \) and properties \(P_A \) and \(P_N \) hold.

Proof. Suppose \(k_3 \geq 1 \). Thus, \(T' \) is obtained from \(T \) by operation \(O_1 \). Let \(u_3 \in L^3(u) \) and let \(u_1u_2u_3 \) be the \((u, u_3)\)-path. Renaming vertices, if necessary, we may assume that \(T' = T - (D(u) \setminus \{u_1, u_2, u_3\}) \). Let \(H = T[D(u) \setminus \{u_1, u_2, u_3\}] \) and let \(X_H = (S(T) \cup \text{Gr}(u) \cup C(4)(u)) \cap V(H) \). We note that \(|X_H| = 2k_0 + k_2 + k_3 + 2k_4 + 1 \). By Observation 5, there exists a \(\gamma_{L_2}(T') \)-set \(S \) that contains the vertex \(u_2 \). If \(u_1 \in S \), then we can replace \(u_1 \) in \(S \) with \(u \). Thus, we may assume \(S \cap \{u, u_1, u_2, u_3\} = \{u, u_2\} \). The set \(S \) can be extended to a semi-TD-set of \(T \) by adding to it the set \(X_H \), implying that \(\gamma_{L_2}(T) \leq |S| + |X_H| = \gamma_{L_2}(T') + |X_H| \).

Conversely, let \(D \) be a \(\gamma_{L_2}(T) \)-set and let \(D_u = D \cap D(u) \). The set \(D \) contains at least two vertices from each \(L^0(u) \)-path and \(L^1(u) \)-path, and at least one vertex from each \(L^2(u) \)-path and \(L^3(u) \)-path, implying that \(|D_u| \geq 2k_0 + k_2 + k_3 + 2k_4 = |X_H| + 1 \). By Observation 5, we can choose \(D \) so that \(S(T) \subseteq D \). In particular, \(u_2 \in D \). If \(u_1 \in D \), then we can replace \(u_1 \) in \(D \) with \(u \). Hence, we may assume that \(D \cap \{u, u_1, u_2, u_3\} = \{u, u_2\} \), implying that \(D \cap V(T') = (D \setminus D_u) \cup \{u_2\} \) is a semi-TD-set of \(T \). Therefore, \(\gamma_{L_2}(T) \leq |D| - |D_u| + 1 \leq |D| - (|X_H| + 1) + 1 = |D| - |X_H| = \gamma_{L_2}(T) - |X_H| \). Consequently, \(\gamma_{L_2}(T) = \gamma_{L_2}(T') + |X_H| = \gamma_{L_2}(T') + 2k_0 + k_2 + k_3 + 2k_4 + 1 \).

Suppose \(v \notin A_{L_2}(T') \) and let \(S' \) be a \(\gamma_{L_2}(T') \)-set that does not contain the vertex \(v \). If \(u_3 \in S' \), then we can replace \(u_3 \) in \(S' \) by \(u_2 \). Hence, we may assume that \(u_2 \in S' \). If \(u_1 \in S' \), then we can replace \(u_1 \) in \(S' \) by \(u \). Hence, we may assume that \(S' \cap \{u, u_1, u_2, u_3\} = \{u, u_2\} \). With these assumptions, the set \(S' \cup X_H \) is a semi-TD-set of \(T \) of cardinality \(|S'| + |X_H| = \gamma_{L_2}(T') + |X_H| = \gamma_{L_2}(T) \). Hence, \(S' \cup X_H \) is a \(\gamma_{L_2}(T) \)-set not containing \(v \), implying that \(v \notin A_{L_2}(T) \). Therefore, by contraposition, if \(v \in A_{L_2}(T) \), then \(v \in A_{L_2}(T') \).

Conversely, suppose \(v \in A_{L_2}(T') \). Suppose to the contrary that \(v \notin A_{L_2}(T) \). Let \(D \) be a \(\gamma_{L_2}(T) \)-set that does not contain \(v \). Analogous to our earlier arguments, we can choose such a set \(D \) so that \(D \cap D(u) = X_H \cup \{u, u_2\} \). Therefore, \(D \cap V(T') \) is a \(\gamma_{L_2}(T') \)-set that does not contain \(v \), a contradiction. Hence, if \(v \in A_{L_2}(T') \), then \(v \in A_{L_2}(T) \). Thus, property \(P_A \) holds. Analogous arguments show that property \(P_N \) holds.

By Claim I, we may assume that \(k_3 = 0 \), for otherwise the desired result follows.

Claim J. Suppose \(k_1 \geq 1 \). Then, \(T' \) is obtained from \(T \) by operation \(O_1 \) for some \(i \in \{2, 3\} \) and

\[
\gamma_{L_2}(T') = \begin{cases}
\gamma_{L_2}(T) - 2k_0 - k_2 - 2k_4 + 1 & \text{for } i = 2, \\
\gamma_{L_2}(T) & \text{for } i = 3.
\end{cases}
\]

Further, the properties \(P_A \) and \(P_N \) hold in both cases.
Proof. Suppose \(k_1 \geq 1 \). Let \(u' \) be a leaf-neighbor of \(u \). We proceed further with a series of two subclaims.

Claim J.1. If \(k_0 + k_2 + k_4 \geq 1 \), then \(\gamma_{12}(T') = \gamma_{12}(T) - 2k_0 - k_2 - 2k_4 + 1 \) and properties \(P_A \) and \(P_{N'} \) hold.

Proof. Suppose \(k_0 + k_2 + k_4 \geq 1 \). Thus, \(T' \) is obtained from \(T \) by operation \(O_2 \). Let \(P : u_1 u_2 u_3 \) be the path \(P_3 \) added to \(T - D(u) \) when constructing \(T' \), where \(u \) is adjacent to \(u_1 \). Let \(H = T[D(u)] \) and let \(X_H = (S(T) \cup \text{Gr}(u) \cup \mathcal{C}(u)) \cap V(H) \).

We note that \(|X_H| = 2k_0 + k_2 + 2k_4 \). By Observation 5 there exists a \(\gamma_{12}(T') \)-set, \(S \), such that \(u_2 \in S \). If \(u_1 \in S \), then we can replace \(u_1 \) in \(D \) with \(u \). Hence, we may assume that \(S \cap \{u, u_1, u_2, u_3\} = \{u, u_2\} \). Since \(k_0 + k_2 + k_4 \geq 1 \), the set \(S \setminus \{u_2\} \) can be extended to a semi-TD-set of \(T \) by adding to it the set \(X_H \), implying that \(\gamma_{12}(T) \leq |S \setminus \{u_2\}| + |X_H| = \gamma_{12}(T') + |X_H| - 1 \).

Conversely, let \(D \) be a \(\gamma_{12}(T) \)-set and let \(D_u = D \cap D(u) \). The set \(D \) contains at least two vertices from each \(L^0(u) \)-path and \(L^4(u) \)-path, and at least one vertex from each \(L^2(u) \)-path, implying that \(|D_u| \geq 2k_0 + k_2 + 2k_4 = |X_H| \). By Observation 5, we can choose \(D \) so that \(S(T) \subseteq D \). In particular, \(u \in D \), implying that \((D \setminus D_u) \cup \{u_2\} \) is a semi-TD-set of \(T' \), and so \(\gamma_{12}(T') \leq |D| - |D_u| + 1 \). If \(|D_u| > |X_H| \), then \((D \setminus D_u) \cup X_H \) is a semi-TD-set of \(T \) of cardinality less than \(|D| \), a contradiction. Hence, \(|D_u| = |X_H| \) and \(\gamma_{12}(T') \leq |D| - |D_u| + 1 = \gamma_{12}(T) - |X_H| + 1 \). Consequently, \(\gamma_{12}(T) = \gamma_{12}(T') + |X_H| - 1 = \gamma_{12}(T') + 2k_0 + k_2 + 2k_4 - 1 \).

Suppose \(v \notin A_{12}(T') \) and let \(S' \) be a \(\gamma_{12}(T') \)-set that does not contain the vertex \(v \). If \(u_3 \in S' \), then we can replace \(u_3 \) in \(S' \) by \(u_2 \). Hence, we may assume that \(u_2 \in S' \). If \(u_1 \in S' \), then we can replace \(u_1 \) in \(S' \) by \(u_2 \). Hence, we may assume that \(S' \cap \{u, u_1, u_2, u_3\} = \{u, u_2\} \). With these assumptions, the set \(S = (S' \setminus \{u_2\}) \cup X_H \) is a semi-TD-set of \(T \) of cardinality \(|S'| + |X_H| - 1 = \gamma_{12}(T') + |X_H| - 1 = \gamma_{12}(T) \). Hence, \(S \) is a \(\gamma_{12}(T) \)-set not containing \(v \), implying that \(v \notin A_{12}(T) \). Therefore, by contraposition, if \(v \in A_{12}(T) \), then \(v \in A_{12}(T') \).

Conversely, suppose \(v \in A_{12}(T') \). Suppose to the contrary that \(v \notin A_{12}(T) \). Let \(D \) be a \(\gamma_{12}(T) \)-set that does not contain \(v \). Analogous to our earlier arguments, we can choose such a set \(D \) so that \(D \cap D(u) = X_H \cup \{u\} \). Therefore, \((D \cap V(T')) \cup \{u_2\} \) is a \(\gamma_{12}(T') \)-set that does not contain \(v \), a contradiction. Hence, if \(v \in A_{12}(T') \), then \(v \in A_{12}(T) \). Thus, property \(P_A \) holds. Analogous arguments show that property \(P_{N'} \) holds.

Claim J.2. If \(k_0 + k_2 + k_4 = 0 \), then \(\gamma_{12}(T') = \gamma_{12}(T) \) and properties \(P_A \) and \(P_{N'} \) hold.

Proof. Since \(k_0 + k_2 + k_4 = 0 \), we have \(k_1 \geq 2 \). Thus, \(T' \) is obtained from \(T \) by operation \(O_3 \). Renaming vertices if necessary, \(T' = T - (D(u) \setminus \{u'\}) \). By assumption, the tree \(T \) is not a star, implying that the tree \(T' \) is not a star. By Observation 5, there exists a \(\gamma_{12}(T') \)-set \(S \) that contains the vertex \(u \) and
Suppose there exists a \(\gamma \)-TD-set \(S \) of \(T \). Let \(v \) be a vertex in \(S \). Hence, we may choose the set \(S \) to be a \(\gamma \)-TD-set not containing \(v \). By Observation 5, we can choose \(S \) to be a \(\gamma \)-TD-set that does not contain \(v \). Consequently, \(\gamma(T) = \gamma_2(T) \).

Suppose \(v \notin A_2(T) \) and let \(S' \) be a \(\gamma_2(T') \)-set that does not contain the vertex \(v \). If \(u' \in S' \) and \(u \in S \), then if \(u \in S \) we replace \(u' \) in \(S \) with a vertex \(x \in N[u] \setminus \{u\} \) such that \(x \neq v \). Hence we may assume that \(u' \notin S' \) (which is possible since \(T' \) is not a star). Thus the set \(S' \) is a \(\gamma_2(T) \)-set not containing \(v \), implying that \(v \notin A_2(T) \). Therefore, by contraposition, if \(v \in A_2(T) \), then \(v \notin A_2(T') \).

Conversely, suppose \(v \in A_2(T') \). Suppose to the contrary that \(v \notin A_2(T) \). Let \(D \) be a \(\gamma_2(T) \)-set that does not contain \(v \). If \(D \) contains a leaf-neighbor \(z \) of \(u \), then if \(u \in D \) we can replace \(z \) in \(D \) with a vertex \(x \in N[u] \setminus \{u\} \) such that \(x \neq v \). Hence, we may choose the set \(D \) so that \(D \cap D[u] = \{u\} \). Therefore, \(D \) is a \(\gamma_2(T) \)-set that does not contain \(v \), a contradiction. Hence, if \(v \in A_2(T') \), then \(v \in A_2(T) \). Thus, property \(P_A \) holds. Analogous arguments show that property \(P_{N'} \) holds.

Claim J follows immediately from Claim J.1 and Claim J.2. □

By Claim J, we may assume that \(k_1 = 0 \), for otherwise the desired result follows.

Claim K. Suppose \(k_4 \geq 1 \). Then, \(T' \) is obtained from \(T \) by operation \(O_4 \) and \(\gamma_2(T') = \gamma_2(T) - 2k_0 - k_2 + 2k_4 + 2 \) and properties \(P_A \) and \(P_{N'} \) hold.

Proof. Suppose \(k_4 \geq 1 \). Thus, \(T' \) is obtained from \(T \) by operation \(O_4 \). By our earlier assumptions, \(k_1 = k_3 = 0 \). Let \(u_4 \in L^4(u) \) and let \(uu_4u_2u_3u_4 \) be the \((u, u_4)\)-path. Renaming vertices if necessary, we may assume that \(T' = T - (D(u) \setminus \{u_1, u_2, u_3, u_4\}) \). Let \(H = T[D(u) \setminus \{u_1, u_2, u_3, u_4\}] \) and let \(X_H = (S(T) \cup C^{(4)}(u) \cup \text{Gr}(u)) \cap V(H) \). We note that \(|X_H| = 2k_0 + k_2 + 2(k_4 - 1) \). By Observation 5, there exists a \(\gamma_2(T') \)-set \(S \) that contains the vertex \(u_3 \). If \(u_2 \in S \), then we can replace \(u_2 \) in \(S \) with \(u_1 \). Thus, we may assume \(S \cap \{u_1, u_2, u_3, u_4\} = \{u_1, u_3\} \). Then the set \(S \) can therefore be extended to a semi-TD-set of \(T \) by adding to it the set \(X_H \), implying that \(\gamma_2(T) \leq |S| + |X_H| = \gamma_2(T') + |X_H| \).

Conversely, let \(D \) be a \(\gamma_2(T) \)-set and let \(D_u = D \cap D(u) \). The set \(D \) contains at least two vertices from each \(L^0(u) \)-path and \(L^4(u) \)-path, and at least one vertex from each \(L^2(u) \)-path, implying that \(|D_u| \geq 2k_0 + k_2 + 2k_4 = |X_H| + 2 \). On the other hand, the set \((D \setminus D_u) \cup \{u_1, u_3\} \) is a semi-TD-set of \(T' \), and so
Suppose \(S \) can be extended to a semi-TD-set of \(X \). Let \(T \) be obtained from \(S \) by adding to it the set \(\gamma \), that is, \(T = S \cup \gamma \).

Thus, \(S' \) is a semi-TD-set of \(T \). Consequently, \(\gamma \) is a semi-TD-set of \(T \). Hence, \(\gamma \) is a semi-TD-set of \(T \).

Suppose \(v \notin A_2(T') \) and let \(S' \) be a semi-TD-set of \(T \) that does not contain the vertex \(v \). If \(u_4 \in S' \), then we can replace \(u_4 \) in \(S' \) with \(u_3 \). Hence we may assume \(u_4 \notin S' \). If \(u_2 \in S' \), then we can replace \(u_2 \) in \(S' \) with \(u_1 \). Thus, we may assume \(S' \cap \{u_1, u_2, u_3, u_4\} = \{u_1, u_3\} \).

Further, the properties \(P_4 \) and \(P_N \) hold in both cases.

Claim L. Suppose \(k_2 \geq 1 \). Then, \(T' \) is obtained from \(T \) by operation \(O_i \) for some \(i \in \{5, 6\} \) and

\[
\gamma_2(T') = \begin{cases}
\gamma_2(T) - 2k_0 & \text{for } i = 5, \\
\gamma_2(T) - 2k_0 - k_2 + 2 & \text{for } i = 6.
\end{cases}
\]

Further, the properties \(P_A \) and \(P_N \) hold in both cases.

Proof. Suppose \(k_2 \geq 1 \). Let \(u_2 \in L^2(u) \) and let \(uu_1u_2 \) be the \((u, u_2)\)-path in \(T \). By our earlier assumptions, \(k_1 = k_3 = k_4 = 0 \). We proceed further with a series of two subclaims.

Claim L.1. If \(k_2 = 1 \), then \(\gamma_2(T') = \gamma_2(T) - 2k_0 \) and properties \(P_A \) and \(P_N \) hold.

Proof. Suppose that \(k_2 = 1 \) and hence, \(k_0 \geq 1 \) and \(L^2(u) = \{u_2\} \). Thus, \(T' \) is obtained from \(T \) by operation \(O_5 \). Let \(uu_1u_2 \) be the \((u, u_2)\)-path. Renaming vertices if necessary, \(T' = T - (D(u) \setminus \{u_1, u_2\}) \). Let \(H = T[D(u) \setminus \{u_1, u_2\}] \) and let \(X_H = (S(T) \cup \text{Gr}(u)) \cap V(H) \). We note that \(|X_H| = 2k_0 \). Every \(\gamma_2(T') \)-set \(S \) can be extended to a semi-TD-set of \(T \) by adding to it the set \(X_H \), implying that \(\gamma_2(T) \leq |S| + |X_H| = \gamma_2(T') + |X_H| \).
Conversely, let D be an $\gamma_{t2}(T)$-set and let $D_u = D \cap D(u)$. The set D_u contains at least two vertices from each $L^0(u)$-path and one of the vertices u_1 or u_2, implying that $|D_u| \geq 2k_0 + 1 = |X_H| + 1$. The set $(D \setminus D_u) \cup \{u_1\}$ is a semi-TD-set of T', and so $\gamma_{t2}(T') \leq |D| - |D_u| + 1 \leq \gamma_{t2}(T) - |X_H|$. Consequently, $\gamma_{t2}(T) = \gamma_{t2}(T') + |X_H| = \gamma_{t2}(T') + 2k_0$.

Suppose $v \notin A_{t2}(T')$ and let S' be a $\gamma_{t2}(T')$-set that does not contain the vertex v. Then, the set $S' \cup X_H$ is a $\gamma_{t2}(T)$-set not containing v, implying that $v \notin A_{t2}(T)$. Therefore, by contraposition, if $v \in A_{t2}(T)$, then $v \in A_{t2}(T')$.

Conversely, suppose $v \in A_{t2}(T')$. Suppose to the contrary that $v \notin A_{t2}(T)$. Let D be a $\gamma_{t2}(T)$-set that does not contain v. Analogous to our earlier arguments, we can choose such a set D so that $D \cap D(u) = X_H \cup \{u_1\}$. Thus, $D \setminus X_H$ is a semi-TD-set of T' of cardinality $|D| - |X_H| = \gamma_{t2}(T) - |X_H| = \gamma_{t2}(T')$. The set $D \setminus X_H$ is therefore a $\gamma_{t2}(T')$-set that does not contain v, a contradiction. Hence, if $v \in A_{t2}(T')$, then $v \in A_{t2}(T)$. Thus, property P_A holds. Analogous arguments show that property P'_A holds.

Claim L.2. If $k_2 \geq 2$, then $\gamma_{t2}(T') = \gamma_{t2}(T) - 2k_0 - k_2 + 2$ and properties P_A and P'_A hold.

Proof. Suppose $k_2 \geq 2$. Thus, T' is obtained from T by operation O_6. Let $P : u_1u_2u_3u_4$ be the path P_2 added to $T - D(u)$ when constructing T', where u is adjacent to u_1. Let $H = T[D(u)]$ and let $X_H = (S(T) \cup Gr(u)) \cap V(H)$. We note that $|X_H| = 2k_0 + k_2$. By Observation 5, there exists a $\gamma_{t2}(T')$-set S that contains the vertex u_3. If $u_2 \in S$, then we may replace u_2 in S with u_1. Hence we may choose S so that $S \setminus \{u_1, u_2, u_3, u_4\} = \{u_1, u_3\}$. The set $S \setminus \{u_1, u_3\}$ can therefore be extended to a semi-TD-set of T by adding to it the set X_H, implying that $\gamma_{t2}(T) \leq |S \setminus \{u_1, u_3\}| + |X_H| = \gamma_{t2}(T') + |X_H| - 2$.

Conversely, let D be a $\gamma_{t2}(T)$-set and let $D_u = D \cap D(u)$. The set D_u contains at least two vertices from each $L^0(u)$-path and one vertex from each $L^2(u)$-path, implying that $|D_u| \geq 2k_0 + k_2 = |X_H|$. The set $(D \setminus D_u) \cup \{u_1, u_3\}$ is a semi-TD-set of T', and so $\gamma_{t2}(T') \leq |D| - |D_u| + 2 \leq \gamma_{t2}(T) - |X_H| + 2$. Consequently, $\gamma_{t2}(T) = \gamma_{t2}(T') + |X_H| - 2 = \gamma_{t2}(T') + 2k_0 + k_2 - 2$.

Suppose $v \notin A_{t2}(T')$ and let S' be a $\gamma_{t2}(T')$-set that does not contain the vertex v. Analogous to our earlier arguments, we can choose such a set S' so that $S' \cap \{u_1, u_2, u_3, u_4\} = \{u_1, u_3\}$. The set $(S' \setminus \{u_1, u_3\}) \cup X_H$ is a semi-TD-set of cardinality $|S'| + |X_H| - 2 = \gamma_{t2}(T') + |X_H| - 2 = \gamma_{t2}(T)$ and is thus a $\gamma_{t2}(T)$-set not containing v, implying that $v \notin A_{t2}(T)$. Therefore, by contraposition, if $v \in A_{t2}(T)$, then $v \in A_{t2}(T')$.

Conversely, suppose $v \in A_{t2}(T')$. Suppose to the contrary that $v \notin A_{t2}(T)$. Let D be a $\gamma_{t2}(T)$-set that does not contain v. Analogous to our earlier arguments, we can choose a set D so that $D \cap D(u) = X_H$. Therefore, $(D \setminus X_H) \cup \{u_1, u_3\}$ is a semi-TD-set of cardinality $|D| - |X_H| + 2 = \gamma_{t2}(T) - |X_H| + 2 = \gamma_{t2}(T')$ and is
Thus a $\gamma_2(T')$-set that does not contain v, a contradiction. Hence, if $v \in A_2(T')$, then $v \in A_2(T)$. Thus, property P_A holds. Analogous arguments show that property P_N holds.

Claim L follows from Claim L.1 and Claim L.2. This completes the proof of Claim L.

By Claim L, we may assume that $k_2 = 0$, for otherwise the desired result follows. By our earlier assumptions, $k_1 = k_3 = k_4 = 0$. Thus, $L(u) = L^0(u)$. Since u is a branch vertex, $k_0 \geq 2$.

Claim M. Suppose $k_0 \geq 2$. Then, T' is obtained from T by operation O_7 and $\gamma_2(T') = \gamma_2(T) - 2k_0 + 2$ and properties P_A and P_N hold.

Proof. Let $\{u_5, v_5\} \subseteq L^0(u)$ and let $u_1u_2u_3u_4u_5$ and $u_1v_2v_3v_4v_5$ be the respective (u, u_5)-path and (u, v_5)-path in T. Thus, T' is obtained from T by operation O_7. Renaming vertices if necessary, we may assume that $T' = T - (D(u) \setminus \{u_1, u_2, u_3, u_4, u_5\})$. Let $H = T[D(u) \setminus \{u_1, u_2, u_3, u_4, u_5\}]$ and let $X_H = (S(T) \cup \text{Gr}(u)) \cap V(H)$. We note that $|X_H| = 2k_0 - 2$. Every $\gamma_2(T')$-set can be extended to a semi-TD-set of T by adding to it the set X_H, implying that $\gamma_2(T) \leq \gamma_2(T') + |X_H|$.

Conversely, let D be a $\gamma_2(T)$-set and let $D_u = D \cap D(u)$. The set D_u contains at least two vertices from each $L^0(u)$-path, implying that $|D_u| \geq 2k_0 = |X_H| + 2$. The set $(D \setminus D_u) \cup \{u_2, u_4\}$ is a semi-TD-set of T', and so $\gamma_2(T') \leq |D| - |D_u| + 2 \leq \gamma_2(T) - |X_H|$. Consequently, $\gamma_2(T) = \gamma_2(T') + |X_H| = \gamma_2(T') + 2k_0 - 2$.

Suppose $v \notin A_2(T')$ and let S' be a $\gamma_2(T')$-set that does not contain the vertex v. Then, the set $S' \cup X_H$ is a $\gamma_2(T)$-set not containing v, implying that $v \notin A_2(T)$. Therefore, by contraposition, if $v \in A_2(T)$, then $v \in A_2(T')$.

Conversely, suppose $v \in A_2(T')$. Suppose to the contrary that $v \notin A_2(T)$. Let D be a $\gamma_2(T)$-set that does not contain v and chosen so that $|D \cap D(u)|$ is a minimum. Let $D_u = D \cap D(u)$. If $|D_u| \geq |X_H| + 3$, then the set $(D \setminus D_u) \cup (X_H \cup \{u, u_2, u_4\})$ is a semi-TD-set of T of cardinality $|D| - |D_u| + |X_H| + 3 \leq |D| = \gamma_2(T)$ and is therefore a $\gamma_2(T)$-set containing fewer vertices of $D(u)$ than does D, a contradiction. Hence, $|D_u| \leq |X_H| + 2$. Analogous to our earlier arguments, $|D_u| \geq |X_H| + 2$. Consequently, $|D_u| = |X_H| + 2$ and $(D \setminus D_u) \cup \{u_2, u_4\}$ is a semi-TD-set of T' of cardinality $|D| - |D_u| + 2 = \gamma_2(T) - |X_H| = \gamma_2(T')$. Thus, $(D \setminus D_u) \cup \{u_2, u_4\}$ is a $\gamma_2(T')$-set that does not contain v, a contradiction. Hence, if $v \in A_2(T')$, then $v \in A_2(T)$. Thus, property P_A holds. Analogous arguments show that property P_N holds.

Theorem 8 follows from Claims I, J, K, L and M.
References

Appendix

We now present an example to illustrate Theorem 2. Applying our pruning process discussed in Section 2 to the rooted tree T with root v illustrated in Figure 1(a), we proceed as follows.

- The branch vertices b_3 and b_4 are both at maximum distance 3 from v in T. We select b_3, where $|L^3(b_3)| = 1$. Thus, b_3 is a type-(T.1) branch vertex and we delete $D(b_3)$ and attach a path of length 3 to b_3.

- The branch vertex at maximum distance from v in the resulting tree (illustrated in Figure 1(b)) is the vertex b_4. Since $|L^1(b_4)| > 2$ and every leaf-descendant of b_4 belongs to $L^1(b_4)$, the vertex b_4 is therefore a type-(T.3) branch vertex and we delete $D(b_4)$ and attach a path of length 1 to b_4.
The branch vertex at maximum distance from v in the resulting tree (illustrated in Figure 1(c)) is the vertex b_2. Since $|L^1(b_2)| = 1$ and $L^1(b_2) = L^3(b_2) = \emptyset$, the vertex b_2 is a type-(T.4) branch vertex and we delete $D(b_2)$ and attach a path of length 4 to b_2.

The branch vertex at maximum distance from v in the resulting tree (illustrated in Figure 1(d)) is the vertex b_1. Since $|L^3(b_1)| = 1$, the vertex b_1 is a type-(T.1) branch vertex and we delete $D(b_1)$ and attach a path of length 3 to b_1. The resulting pruned tree T_v is illustrated in Figure 1(e).

Since $|\overline{L}^1(v)| = 1$ and $|\overline{L}^3(v)| = 1$, by Theorem 2, we deduce that $v \notin A_{t2}(T) \cup N_{t2}(T)$.

Received 18 December 2014
Revised 13 April 2015
Accepted 13 April 2015