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Abstract

The introduced three parameter (position � , scale � and shape 
 ) mul-
tivariate generalized Normal distribution ( 
 -GND) is based on a strong the-
oretical background and emerged from Logarithmic Sobolev Inequalities. It
includes a number of well known distributions such as the multivariateUni-
form, Normal, Laplace and the degenerated Dirac distributions. Inthis pa-
per, the cumulative distribution, the truncated distribution and th e hazard
rate of the 
 -GND are presented. In addition, the Maximum Likelihood Es-
timation (MLE) method is discussed in both the univariate and multivar iate
cases and asymptotic results are presented.
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1. Introduction

Recall the de�nition of the 
 -order generalized Normal distribution (
 -GND):
The p-dimensional random variableX follows the 
 -GND, N p


 (�; �) with mean
vector � 2 Rp and scale matrix � 2 Rp� p, when the density function, f X , is of
the form

(1) f X (x; �; � ; 
 ) = Cp

 jdet � j� 1=2 exp

n
� 
 � 1


 Q� (x)



2( 
 � 1)

o
; x 2 Rp;

with quadratic form Q� (x) = ( x � � )� � 1(x � � )T , x 2 Rp, � = ( �; �) 2 Rp� (p� p) ,
where the normality factor Cp


 is de�ned as

(2) Cp

 = � � p=2 �

� p
2 + 1

�

�( p 
 � 1

 + 1)

( 
 � 1

 )p 
 � 1


 :

We denote X � N p

 (�; �). Notice that, for 
 = 2, N p

2 (�; �) is the well known
multivariate Normal distribution.

Consider now the multivariate and elliptically contoured Uniform Up(�; �),
Normal N p(�; �) and Laplace L p(�; �) distributions, as well as the degenerate
Dirac distribution Dp(� ). Let U, N , L and D random variables following respec-
tively Up, N p, L p and f D as above, adopting the following density functions:

f U (x) =
�( p

2 + 1)

(� p det �) 1=2
; x 2 Rp with Q� (x) � 1;(3)

f N (x) =
1

[(2� )p det �] 1=2
exp

�
� 1

2Q� (x)
	

; x 2 Rp;(4)

f L (x) =
�( p

2 + 1)

p!(� p det �) 1=2
exp

n
� Q1=2

� (x)
o

; x 2 Rp;(5)

f D (x) =
�

+ 1 ;x = �;
0; x 2 Rp n �:

(6)

All the above distributions are members of the
 -GND family for certain values
of the shape parameter
 , see [12] for details. Thus, the order value
 , eventually,
\bridges" distributions with complete di�erent shape as wel l as \tailing" behavior.
Indeed:

Theorem 1. The multivariate 
 -GND r.v. X 
 , i.e., X 
 � N p

 (�; �) with p.d.f.

f X 
 , coincides for di�erent values of the shape parameter
 with the Uniform,
Normal, Laplace and Dirac distributions, as
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(7) f X 
 =

8
>>>><

>>>>:

f D ; for 
 = 0 and p = 1 ; 2;
0; for 
 = 0 and p � 3;
f U; for 
 = 1 ;
f N ; for 
 = 2 ;
f L ; for 
 = �1 :

2. C.D.F. for the 
 -GND

Recall that the cumulative distribution function (c.d.f.) of the standardized nor-
mally distributed Z � N (0; 1) is given by

(8) �( z) = 1
2 + 1

2 erf( z
2); z 2 R;

with erf( �) being the usual error function. For the 
 -GND the generalized error
function Erf 
= (
 � 1) is involved, de�ned as, [1],

(9) Erf a(x) :=
�( a + 1)

p
�

xZ

0

e� ta
dt; x 2 R:

The generalized error function, can be expressed, through the lower incomplete
gamma function q(a; x) or the upper (complementary) incomplete gamma func-
tion �( a; x) = �( a) � q(a; x), in the form

(10) Erf a(x) = �( a)p
� 


� 1
a ; xa�

= �( a)p
�

�
�

� 1
a

�
� �

� 1
a ; xa��

; x 2 R; a � 0:

Theorem 2. The c.d.f. FX 
 of a 
 -order normally distributed random variable
X 
 � N 
 (�; � 2) is given by

FX 
 (x) =
1
2

+
p

�

2 �( 
 � 1

 ) �( 



 � 1)
Erf 



 � 1

n
( 
 � 1


 )

 � 1


 x� �
�

o
(11)

= 1 �
1

2 �( 
 � 1

 )

�
�


 � 1

 ; 
 � 1


 ( x� �
� )




 � 1

�
; x 2 R:(12)

Proof. From density function f X
 , as in (1), we have

F
 (x) =

xZ

0

f 
 (t)dt =
C1




�

xZ

�1

exp
n

� 
 � 1



�
� x� �

�

�
�




 � 1

o
dt:
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Applying the linear transformation w = t � �
� , the above is reduced to

(13) FX 
 (x) = C1



x � �
�Z

�1

exp
n

� 
 � 1

 jwj




 � 1

o
dw = � Z 
 ( x� �

� );

where � Z 
 is the c.d.f. of the standardized
 -ordered Normal distribution with
Z 
 = 1

� (X 
 � � ) � N 
 (0; 1). Moreover, � Z 
 can be expressed in terms of the
generalized error function. In particular

� Z 
 (z) = C1



zZ

�1

exp
n

� 
 � 1

 jwj




 � 1

o
dw = � Z 
 (0) + C1




zZ

0

exp
n

� 
 � 1

 jwj




 � 1

o
dw;

and as f Z 
 is a symmetric density function around zero, we have

� Z 
 (z) = exp
n

� 
 � 1

 jwj




 � 1

o
dw =

1
2

+ C1



zZ

0

exp
�

�
�
�
�( 
 � 1


 )

 � 1


 w
�
�
�




 � 1

�
dw;

and thus

(14) � Z 
 (z) =
1
2

+ C1

 ( 



 � 1)

 � 1




( 
 � 1

 )


 � 1

 zZ

0

exp
n

� u




 � 1

o
du:

Substituting the normalizing factor, as in (2), and from the de�nition of the
generalized error function, it is

(15) � Z 
 (z) =
1
2

+
p

�

2 �( 
 � 1

 + 1) �( 2
 � 1


 � 1 )
Erf 



 � 1

n
( 
 � 1


 )

 � 1


 z
o

; z 2 R;

i.e., (11) holds, while (12) formed through (10).

It is essential for numeric calculations, to express (11) considering positive argu-
ments for Erf. Indeed, through (14), we obtain

(16) FX 
 (x) =
1
2

+
sgn(x � � )

p
�

2 �( 
 � 1

 ) �( 



 � 1)
Erf 



 � 1

n
( 
 � 1


 )

 � 1



�
� x� �

�

�
�
o

; x 2 R;

while applying (10) into (16) we obtain
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(17) FX 
 (x) =
1 + sgn(x � � )

2
�

sgn(x � � )

2 �( 
 � 1

 )

�
�


 � 1

 ; 
 � 1




�
� x� �

�

�
�




 � 1

�
; x 2 R;

where sgn(�) is the usual sign function.

Proposition 3. The c.d.f. of the positive-orderedX 
 � N 
> 1(�; � 2) admits the
following bounds,B (x; �), i.e.,

(18) B (x; 
 � 1

 ) < F X 
 (x) < B

�
x;

h
( 
 � 1


 )
1

 �( 
 � 1


 )
i 
 � 1




�
; x 2 R;

where

(19) B (x; k) := 1
2 + 1

2 sgn(x � � )
�

1 � exp
n

� k
�
� x� �

�

�
�




 � 1

o� 
 � 1



; k 2 R+ :

The inverted inequalities hold for the negative{orderedX 
 � N 
< 0(�; � 2).

Proof. Applying the inequalities, [3],

(20) �(1 + 1
a )

h
1 � e� u(a)xa

i 1=a
<

xZ

0

e� ta
dt < �(1 + 1

a )
h
1 � e� v(a)xa

i 1=a
;

where

u(a) =
�

� � a(1 + 1
a ); 0 < a < 1;

1; a > 1;
and v(a) =

�
1; 0 < a < 1;
� � a(1 + 1

a ); a > 1;

into the de�nition of the generalized error function in (9) w e obtain, through the
additive identity of the gamma function, that
(21)

1p
� �( a) �( 1

a )
h
1 � e� u(a)xa

i 1=a
< Erf a(x) < 1p

� �( a) �( 1
a )

h
1 � e� v(a)xa

i 1=a
:

Consider now the
 -order normally distributed X 
 � N 
 (�; � 2) with 
 2 R n[0; 1]
and let a = 



 � 1 . Then, for the positive{ordered X 
 , i.e., for 
 > 1, it is a > 1,
while for the negative{ordered X 
 it is 0 < a < 1. Therefore, de�ning B (x; �) as
in (19), the bounds (18) for 
 > 1 hold true, as (21) is applied to (16). For the
negative{ordered case of
 < 0 the inverted bounds of (18) hold.

Example 4. The c.d.f. of the normally distributed X � N (�; � 2) admits the
following bounds,
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1
2 + 1

2 sgn(x � � )

q

1 � e� 1
2 ( x � �

� )2
< F X (x) < 1

2 + 1
2 sgn(x � � )

q

1 � e� 2
� ( x � �

� )2
;

while for the (� 1)-ordered X � 1 � N � 1(�; � 2), it is

1
2+ 1

2 sgn(x� � )
�

1 � e�
q

2j x � �
� j

� 2

< F X � 1 (x) < 1
2+ 1

2 sgn(x� � )
�

1 � e� 2
q

j x � �
� j

� 2

:

As the generalized error function Erfa is de�ned in (10) through the upper in-
complete gamma function �( a� 1; �), series expansions can be used for a more
\numerical{oriented" form of (10). Here we present some expansions of the usual
c.d.f. of the N 
 family of distributions.

Corollary 5. The usual c.d.f. FX of X � N 1

 (�; � 2) can be expressed in the

series expansion form

(22) FX (x) = 1
2 +

�

 � 1




� 
 � 1



2

 �( 
 � 1


 )
( x� �

� )
1X

k=0

�
1� 



 j x� �
� j




 � 1

� k

k![(k + 1) 
 � 1]
; x 2 R:

Proof. Adopting the series expansion form of the lower incomplete gamma func-
tion,

(23) q(a; x) :=

xZ

0

ta� 1e� t dt =
1X

k=0

(� 1)k

k!(a+ k) xa+ k ; x; a 2 R+ ;

a series expansion form of the generalized error function isextracted through
(10), i.e.

(24) Erf a(x) = �( a+1)p
�

1X

k=0

(� 1)k

k!(ka+1) xka+1 ; x; a 2 R+ :

Substituting now the series expansion form of (24) into (16)we get

FX 
 (x) =
1
2

+ ( 
 � 1)C1



1X

k=0

(� 1)k

k! �
( 
 � 1


 )k


 (k+1) � 1

�
�
� log x� �

�

�
�
�

k


 � 1 +1

; x 2 R �
+ ;

and expressing the in�nite series using the integer powersk, and the fact that
sgn(x)x = jxj, x 2 R, we �nally derive the series expansions as in (22).
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Corollary 6. For the negative-ordered X � N 
 (�; � 2) with 
 = 1
1� n 2 R � ,

n 2 N, n � 2, we obtain the c.d.f.'s FX as �nite series expansion, i.e.,

(25) FX (x) =
1 + sgn(x � � )

2
�

sgn(x � � )

2 exp
n

n
�
� x� �

�

�
�1=n

o
n� 1X

k=0

nk

k!

�
� x� �

�

�
�k=n

; x 2 R:

Proof. Applying the following known �nite expansion form of the upp er incom-
plete gamma function,

�( n; x ) = ( n � 1)!e� x
n� 1X

k=0

xk

k
; x 2 R; n 2 N� = N n 0;

into (17) we readily get (25).

Example 7. For the (� 1)-ordered normally distributed X � 1 � N � 1(�; � 2) we
have

FX � 1 (x) =
1 + sgn(x � � )

2
� sgn(x � � )

1 + 2
q �

� x� �
�

�
�

2 exp
�

2
q �

� x� �
�

�
�
� ;

while for the (� 1=2)-ordered normally distributed X � 1=2 � N � 1=2(�; � 2), it is

FX � 1=2 (x) =
1 + sgn(x � � )

2
� sgn(x � � )

1 + 3 3
q �

� x� �
�

�
� + 9 3

q � x� �
�

� 2

2 exp
�

3 3
q �

� x� �
�

�
�
� :

Table 1 provides the probability values FX 
 (x) = Pr f X 
 � xg, for x = � 3;
� 2; : : : ; 3 for variousX 
 � N 
 (0; 1). The column for x = 0 is omitted as FX 
 (0) =
1=2 for every 
 value (N 
 (0; 1) is a symmetric distribution around the mean 0).
Moreover, the last column provide also the 1st quartile points QX 
 (1=4) of X 
 ,
i.e., Prf X 
 � QX 
 (1=4)g = 1=4 for various 
 values. For the 3rd quartile points
QX 
 (3=4), it is QX 
 (3=4) = � QX 
 (1=4) due to the symmetric form of the 
 -GND
around the mean 0. These quartiles evaluated using the quantile function of X 
 ,

QX 
 (P) := inf
�

x 2 Rj FX 
 (x) � P
	

= sgn(2P � 1)�
h




 � 1 � � 1

�

 � 1


 ; j2P � 1j
�i 
 � 1



; P 2 (0; 1);(26)

for P = 1=4; 3=4, that derived through (17). The values of the inverse upper
incomplete gamma function � � 1( 
 � 1


 ; �) were numerically calculated.



150 C.P. Kitsos, V.G. Vassiliadis and T.L. Toulias

Table 1. Probability mass valuesFX 
 (x) for various x 2 R as well as the 1st quartile
points QX 
 (1=4), for certain r.v. X 
 � N 
 (0; 1).


 F X 
 (� 3) FX 
 (� 2) FX 
 (� 1) FX 
 (1) FX 
 (2) FX 
 (3) QX 
 ( 1
4 )

� 50 0.0260 0.0690 0.1846 0.8154 0.9310 0.9740� 0:6936
� 10 0.0304 0.0742 0.1869 0.8131 0.9258 0.9696� 0:6951
� 5 0.0357 0.0802 0.1895 0.8105 0.9198 0.9643� 0:6967
� 2 0.0502 0.0950 0.1958 0.8042 0.9050 0.9498� 0:7004
� 1 0.0699 0.1131 0.2030 0.7970 0.8869 0.9301� 0:7042

� 1=2 0.0970 0.1361 0.2116 0.7884 0.8639 0.9030� 0:7082
� 1=10 0.1656 0.1889 0.2299 0.7701 0.8111 0.8344� 0:7142

1 0. 0. 0. 1. 1. 1. � 0:5
2 0.0013 0.0228 0.1587 0.8413 0.9772 0.9987� 0:6745
3 0.0071 0.0402 0.1699 0.8301 0.9598 0.9929� 0:6833
4 0.0112 0.0480 0.1742 0.8258 0.9520 0.9888� 0:6865
5 0.0138 0.0523 0.1765 0.8235 0.9477 0.9862� 0:6881

10 0.0193 0.0604 0.1805 0.8195 0.9396 0.9807� 0:6909
50 0.0238 0.0663 0.1833 0.8167 0.9337 0.9762� 0:6927

�1 0.0249 0.0677 0.1839 0.8161 0.9323 0.9751� 0:6931

Figure 1 illustrates Theorem 2 with X 
 � N 
 (0; 1) in a compact form, including
all the c.d.f. FX 
 (x) for every 
 2 [� 10; 0) [ [1; 10] and x 2 [� 3; 3]. The known
c.d.f. of the Uniform (
 = 1) and Normal ( 
 = 2) distributions are also de-
picted. The c.d.f. of N 
 = � 10(0; 1), which approximates the c.d.f. of the Laplace
distribution L (0; 1) = N �1 (0; 1), as well as the c.d.f. ofN � 0:005(0; 1), which
approximates the degenerate Dirac distributionD(0), are clearly presented. No-
tice the smooth{bringing of FX 
 (x) between these signi�cant distributions which
are included into the 
 -GND family of distributions for 
 2 R [ f�1g n (0; 1).
Moreover, upon the formed surface, the quantile functionsQX 
 (P) are depicted
as curves withP = 0 :05; 0:1; : : : 0:95 with the 1st and 3rd quartile QX 
 (1=4) and
QX 
 (3=4) distinguished.

From (1) and (12) or (17) the following holds.

Corollary 8. The hazard rate hX 
 = f X 
 =(1 � FX 
 ) of a 
 -order normally
distributed random variable X 
 � N 
 (�; � 2) is given by

(27) hX 
 (x) =
( 



 � 1)1=
 exp
n


 � 1

 j x� �

� j




 � 1

o

�
�


 � 1

 ; 
 � 1


 ( x� �
� )




 � 1

� ; x 2 R;

or

(28) hX 
 (x) =
( 



 � 1)1=
 exp
n


 � 1

 j x� �

� j




 � 1

o

1 � sgn(x � � )q
�


 � 1

 ; 
 � 1


 j x� �
� j




 � 1

� ; x 2 R;
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Figure 1. Surface graph of all the c.d.f. FX 
 (x) along x-axis and 
 -axis, where X 
 �
N 
 (0; 1) as well as the quantile functionsQX 
 (P), P 2 [0; 1] (surface curves).

whereq(a; x) = �( a) � �( a; x), x 2 R, a 2 R+ , being the lower incomplete gamma
function.

Example 9. For the Laplace distributed random variableY := X �1 � N �1 (�; � 2)
= L (�; � ), using the fact that q(1; x) = 1 � ex , x 2 R, (28) for 
 ! �1 , can be
written as

(29) hY (y) =

(
2 expfj y� �

� jg � 1; for y � �;

1; for y > �;

which is the hazard rate of the Laplace distribution, as expected.

Figure 2 illustrates also in a compact form, the hazard ratesof X 
 � N 
 (0; 1)
for every 
 2 [� 10; 0) [ [1; 10] and x 2 [� 3; 3]. The hazard rate of the Uniform
(
 = 1) and Normal ( 
 = 2) distributions are clearly depicted. The hazard rate
of N 
 = � 10(0; 1), which approximate the hazard rate of the Laplace distribution
L (0; 1) = N �1 (0; 1), as well as the one ofN � 0:005(0; 1), which approximates the
degenerate Dirac distribution D(0), are also distinguished.

The truncated 
 -GND can be derived through the p.d.f. and c.d.f. of a
univariate r.v. from N 
 (�; � 2). Recall the p.d.f. f X as in (1) and c.d.f. FX as
in (11). We shall say that X follows the right-truncated 
 -GND at x = � with
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Figure 2. Surface graph of all the hazard rateshX 
 (x) along x-axis and 
 -axis, where
X 
 � N 
 (0; 1).

p.d.f. f +
X when

(30) f +
X (x; � ) =

8
><

>:

0; if x > �;

f X (x)
FX (� )

=
C1


 �

FX (� )
exp

n
� 
 � 1




�
� x� �

�

�
�




 � 1

o
; if x � �:

Similarly, the 
 -GND r.v. X is a left-truncated 
 -GND r.v. at x = � , when
(31)

f �
X (x; � ) =

8
><

>:

0; if x < �;

f X (x)
1 � FX (� )

=
C1


 �

1 � FX (� )
exp

n
� 
 � 1




�
� x� �

�

�
�




 � 1

o
; if x � �:

The Lognormal distribution can be also nicely extended to the 
 -order Lognormal
distribution, or 
 -GLND, in the sense that if X � N 1


 (�; � 2) then eX will follow
the 
 -GLND, i.e., eX � LN 
 (�; � ) is a 
 -order lognormally distributed r.v. The
p.d.f. of X 
 � LN 
 (�; � ) is then given by

(32) gX 
 (x) = 1
x f log X 
 (log x) = C1


 �x � 1 exp
n

� 
 � 1

 j log x� �

� j




 � 1

o
; x 2 R �

+ ;

as logX 
 � N 
 (�; � 2).



MLE for the 
 -order generalized Normal distribution 153

3. Maximum likelihood estimation

Let X = f X 1; X 2; : : : ; X n g be a random sample drawn from (1) with n di�erent
values. The log-likelihood function `(�; � ; 
 ; X ) is then given by

`(�; � ; 
 ; X ) =
nX

i =1

log f X (X i ; �; �) =
nX

i =1

n
logCp


 � 1
2 log j � j � 
 � 1


 Q(X i )



2( 
 � 1)

o

= n logCp

 � n

2 log j� j � 
 � 1



nX

i =1

�
(X i � � )T � � 1(X i � � )

� 

2( 
 � 1) :(33)

3.1. Univariate case

For the univariate caseN 1

 (�; � 2) with known 
 , it is

`(�; � 2; X ) = n logC1

 � n

2 log � 2 � ( 
 � 1

 )� � 



 � 1

nX

i =1

jX i � � j




 � 1

= n log
n

1
2 � � 1[�( 
 � 1


 + 1)] � 1( 
 � 1

 )


 � 1



o
� 
 � 1




nX

i =1

�
�
� X i � �

�

�
�
�




 � 1 :(34)

The partial derivatives are

@`
@�

(�; � 2) = � � 


 � 1

nX

i =1

jX i � � j
2� 


 � 1 (X i � � )

= � � 


 � 1

nX

i =1

sgn(X i � � ) (X i � � )
1


 � 1 ;(35)

@2`
@�2

(�; � 2) = � 1

 � 1 � � 



 � 1

nX

i =1

jX i � � j
2� 


 � 1 ;(36)

@`
@�2

(�; � 2) = � n
2� 2 + 1

2 �
2� 3


 � 1

nX

i =1

jX i � � j




 � 1 ;(37)

@2`
@(� 2)2 (�; � 2) = n

2� 4 + 2� 3

4(
 � 1) �

4� 5


 � 1

nX

i =1

jX i � � j




 � 1 ;(38)

@2`
@�@�2

(�; � 2) = � 

2(
 � 1) �

2� 3


 � 1

nX

i =1

jX i � � j
2� 


 � 1 (X i � � )

= � 

2(
 � 1) �

2� 3


 � 1

nX

i =1

sgn(X i � � ) (X i � � )
1


 � 1 :(39)
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Figure 3. Graphs of the d(� ; X; 
 ) values along � 2 [0; 5] for various 
 values for the
same random sampleX .

For 
 < 0 and 
 > 2, (35) suggests that the log likelihood hasm points of non-
di�erentiality. In general, (35) does not have an explicit solution. Nevertheless,
there are examples of estimates that can be found explicitly.

Example 10. For the Laplace distributed random variableX � N �1 (�; � 2) =
L (�; � ), the MLE of � is �̂ = Med f X i g.

Example 11. For the Normal distributed random variable X � N 2(�; � 2) =
N (�; � ), the MLE of � is �̂ = 1

n

P n
i =1 X i .

Figure 3 illustrates part of the function d(� ; X; 
 ) =
P n

i =1 jX i � � j




 � 1 for a
random sample X = f X 1; X 2; : : : ; X 10g and various values of
 . One can see
the point of non-di�erentiality and that as 
 goes to in�nity the line tends to a
polygonal one. For 
 < 1, from (36), we derive that `(�; � 2; X ) is a union of
convex curves and this suggest that maximum is at one of theX i 's.
On the other hand, (37) is always explicitly solved and the MLE of � 2, when 

is known, is given by,

(40) �̂ 2 =

 
1
n

nX

i =1

jX i � � j




 � 1

! 2( 
 � 1)



:
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Figure 4. Graphs of ^� 2(� ; X; 
 ) along � 2 [0; 5] for various 
 values for the same random
sampleX .

Figure 4 illustrates �̂ 2(� ; X; 
 ) values as in (40).
The MLE of � is asym-ptotically unbiased, see [4] and [7], and its asymptotic

variance is given by,

(41) Var �̂ = 1
n ( 
 � 1


 )2=

�( 
 � 1


 )

�( 
 +1

 )

�̂ 2:

When � is unknown, Chiodi in [4] gives an unbiased estimate for the�




 � 1 which
is given by

(42) �̂




 � 1 =

nP

i =1
jX i � �̂ j




 � 1

n � 

2(
 � 1)

;

and its asymptotic sampling distribution is given by

(43) f (x) =
� c

�( c)
xc� 1e� �x ;

i.e., a Gamma distribution with

� =
n(
 � 1)


�




 � 1
and c = n 
 � 1


 � 1
2 :
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When � is known, Lunetta in [13] gives the asymptotic sampling distribution

(44) f (x) =
� c0

�( c0)
xc0� 1e� �x ;

i.e., a Gamma distribution with the same � and c0 = c + 1=2.
The asymptotic matrix of variance of the maximum likelihood estimators (�̂ ,

�̂ ), i.e., the inverse of the Fisher's information matrix is given by

(45) I � 1 =

"
� 2 (
 � 1) �(1 � 1=
 )

�(1 =
 ) ( 


 � 1)


 � 2

 0

0 � 2 
 � 1



#

:

This implies, that the parameters � and � are orthogonal, according to the
Fisher's information matrix.

If the shape parameter
 is unknown, then

@(̀�; �; 
 )
@


= n

 2

h
log 



 � 1 +  
�
2 � 1




�
� 1

i
� 1


 2 �




 � 1

nX

i =1

jX i � � j




 � 1

� 1


 (
 � 1)�




 � 1

 

log �
nX

i =1

jX i � � j




 � 1 �
nX

i =1

jX i � � j




 � 1 log jX i � � j

!

where  (x) = d
dx log �( x) the digamma function. It is obvious that the latter

can not be solved explicitly. The asymptotic variance/covariance matrix of the
MLE's of ( �; �; 
 ) is given by,

(46) I � 1 =

2

6
6
4

� 2 (
 � 1) �(1 � 1=
 )
�(1 =
 ) ( 



 � 1)

 � 2


 0 0

0 � 2 (
 � 1)5




�
1 + A 


B 


�
�
 (
 � 1)3 A 


B 


0 �
 (
 � 1)3 A 

B 



 (
 � 1)
B 


3

7
7
5 ;

where A 
 = [ � log(1 � 1

 ) +  (2 � 1


 )]2, B 
 = (2 � 1

 ) 0(2 � 1


 ) � 1 and  0(x) is
the trigamma function, [1]. This implies, that the 
 parameter is orthogonal to
� but not to � , according to the Fisher's information matrix. The proof follows
the one found in [2].

Mineo and Ruggieri in [8], has presented the usefulnormalp R package which
among others, contains the paramp(�) function that estimates the location param-
eter � and the scale parameter� by means of the maximum likelihood method,
by considering the two cases when
 is known and when it is unknown. Never-
theless, when it is unknown, the estimate ofp
 = 
= (
 � 1) is obtained through
the index of kurtosis V I , [7].



MLE for the 
 -order generalized Normal distribution 157

3.2. Multivariate case

For the multivariate case N p

 (�; �) with known 
 , we obtain

(47)
@(̀�; �)

@�
=

nX

i =1

Q(x i )
2� 


2( 
 � 1) � � 1(X i � � );

@(̀�; �)
@�

= � n� � 1 +
nX

i =1

R(X i )[Q(X i )]
2� 


2( 
 � 1) + n
2 � � 1 � Ip

� 1
2

nX

i =1

R(X i )[Q(X i )]
2� 


2( 
 � 1) � Ip;

whereR(x) = � � 1(x � � )(x � � )T � � 1 and � being the element-wise (Hadamard)
product on matrices, see [10] and [5]. For
 = 2 we obtain

@(̀�; �)
@�

= � n� � 1 +
nX

i =1

R(X i ) + n
2 � � 1 � Ip � 1

2

nX

i =1

R(X i ) � Ip;

with solution

� = n� 1
nX

i =1

X i X T
i ;

and coincides with the one for the Normal distribution, [9].
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