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Abstract

The introduced three parameter (position , scale and shape ) mul-
tivariate generalized Normal distribution ( -GND) is based on a strong the-
oretical background and emerged from Logarithmic Sobolev Ineggalities. It
includes a number of well known distributions such as the multivariate Uni-
form, Normal, Laplace and the degenerated Dirac distributions. Inthis pa-
per, the cumulative distribution, the truncated distribution and th e hazard
rate of the -GND are presented. In addition, the Maximum Likelihood Es-
timation (MLE) method is discussed in both the univariate and multivar iate
cases and asymptotic results are presented.
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1. Introduction

Recall the de nition of the -order generalized Normal distribution ( -GND):
The p-dimensional random variable X follows the -GND, NP(: ) with mean
vector 2 RP and scale matrix 2 RP P, when the density function, fx, is of
the form

n (0]

(1)  fx(x; ; ;)= CPjdet j PPexp —Q (X)X ® ; x2RP

with quadratic form Q (x)=(x ) (x )T,x2RP, =(; ) 2RP (P P,
where the normality factor CP is de ned as

p
(2) CP= p=2__2 — :- 1 (_1)p71:
(p—+1)
We denote X N P(; ). Notice that, for =2, NJ(; ) is the well known

multivariate Normal distribution.

Consider now the multivariate and elliptically contoured Uniform UP(; ),
Normal NP(; ) and Laplace LP(; ) distributions, as well as the degenerate
Dirac distribution DP( ). Let U, N, L and D random variables following respec-
tively UP, NP, LP and fp as above, adopting the following density functions:

@) fu(x) = (p(dgei':-)l)l:Z; x2RP with Q (x) 1.
@ W)= ermer 300§ x2R”
©) fLO) = %expn Q700 x2 RY
O e I

All the above distributions are members of the -GND family for certain values
of the shape parameter , see [12] for details. Thus, the order value , eventually,
\bridges" distributions with complete di erent shape as wel | as \tailing" behavior.
Indeed:

Theorem 1. The multivariate -GND r.v. X ,ie., X N P(; ) with p.d.f.
fx , coincides for di erent values of the shape parameter with the Uniform,
Normal, Laplace and Dirac distributions, as
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8
fp; for =0 and p=1;

0; for =0 and p 3

2;

@) fx =  fy; for =1;
3 fy; for =2
CofL; for =1

2. C.D.F. for the -GND

Recall that the cumulative distribution function (c.d.f.) of the standardized nor-
mally distributed Z N (0;1) is given by

(8) (2)= 3+ 3erf(3); z2R;
with erf( ) being the usual error function. For the -GND the generalized error
function Erf - 4 is involved, de ned as, [1],
Pz
+ a
9) Erfa) = 87D ot x2R:

0

The generalized error function, can be expressed, throughhte lower incomplete
gamma function g(a; x) or the upper (complementary) incomplete gamma func-
tion ((a;x)= ( a) g(a;x), in the form

(10)  Erfa(x)= b2 Lixd = 52

[
=
X
@
X
N
Py
Q
o

Theorem 2. The c.d.f. Fx of a -order normally distributed random variable
X N (; 2 isgiven by

1 p— n . 0
(11) Fx (x) = =+ Erf __ (—) *—

2 2(—)(— °

1 1 1/x —

(12) =1 2 (5 —L_1xX )1 x2R:
Proof. From density function fx , asin (1), we have

Vag ct & n e

F(xx)= f (t)dt= — exp —*X— "1 dt

0 1
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Applying the linear transformation w = “—, the above is reduced to
Z~ n 0

(13) Fx ()= C'  exp —Hwj © dw= z (*—);
1

where 7 is the c.d.f. of the standardized -ordered Normal distribution with
Z = (X ) N (0;1). Moreover, z can be expressed in terms of the
generalized error function. In particular

zz n 0 V2 )

7 (2=C' exp —ljwj T dw= z (0)+C!' exp —ijwj T dw;
1 0

and asfz is a symmetric density function around zero, we have

n 0 1 zz -
z(@=exp W T dw=Z+C oexp  (—) T w aw:
0
and thus
1
L1
1 . =2 * 0
(14) z ()= 3+ Cl—p) exp u T du

0

Substituting the normalizing factor, as in (2), and from the de nition of the

generalized error function, it is
p— n .0
+ Erf __ (—) z ; z2R;
2(—+1 (25

NI

(15) z (2)=

i.e., (11) holds, while (12) formed through (10). ]

It is essential for numeric calculations, to express (11) aesidering positive argu-
ments for Erf. Indeed, through (14), we obtain

p— n 0
1, sonx ) Erf (—1)71 X . Xx2R;

(1) Fx (0= 3+ g e
1

while applying (10) into (16) we obtain
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(17) Fx (x)= 1+59”2(X ) Sg”((x_l)) 11X T . xR

where sgn() is the usual sign function.

Proposition 3. The c.d.f. of the positive-orderedX N s 1(; 2) admits the
following bounds,B (x; ), i.e.,

h i1
(18) B —Y)<Fx (0<B x (-9 (—Y  ; x2R;
where
n o0 1
(19) B(x; k)= 3+2sgnx ) 1 exp k*— T . k2 Rs:

The inverted inequalities hold for the negative{orderedX N < o(; 2).

Proof. Applying the inequalities, [3],

h i & h g
(20) 1+ %) 1 e u@x < e Pdt< (1+ %) 1 e V()X :
0
where
31+ %); 0<a< 1 1 O<a< 1;
= a’’ ! - ' )
u(a) 1 a> 1 and v(a) a1 + %); a> 1

into the de nition of the generalized error function in (9) w e obtain, through the
additive identity of the gamma function, that
(21)

i 1= iq=
Pl (a) (1) 1 e u@@® e Erfa(x) < pL (@) (%) 1 e V@< e
Consider now the -order normally distributed X N (; 2)with 2 Rn[0;1]
and let a= —. Then, for the positive{ordered X , i.e., for > 1,itisa> 1,
while for the negative{ordered X itis 0 <a < 1. Therefore, de ning B(x; ) as
in (19), the bounds (18) for > 1 hold true, as (21) is applied to (16). For the
negative{ordered case of < 0 the inverted bounds of (18) hold. [

Example 4. The c.d.f. of the normally distributed X N (; ?2) admits the
following bounds,
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qg — — qg — — —
T+lsgnk ) 1 ez P<Fyx)<i+lsgnx ) 1 e )%

while for the ( 1)-ordered X ; N 1(; 2),itis

o 2 T
lelsgnk ) 1 e A1 <Py (0<i+isgnx ) 1 e? 1!

2

As the generalized error function Erf; is de ned in (10) through the upper in-
complete gamma function (a !; ), series expansions can be used for a more
\numerical{oriented" form of (10). Here we present some ex@nsions of the usual
c.d.f. of the N family of distributions.

Corollary 5. The usual c.d.f. Fx of X N I(; ?) can be expressed in the
series expansion form

_1 — » 1_jX_jﬁ “
(22) Fx(x)= 3+ m(x—) KikeD 1 2 R:
k=0

Proof. Adopting the series expansion form of the lower incomplete @amma func-
tion,

P

1 R (¥ k
(23) qa;x) = t2 le ldt= R X G X a2 Re;
0 k=0

a series expansion form of the generalized error function isxtracted through
(20), i.e.

R ’
(24) Erfa(x) = {52 k!((kalil) xka*l. x-a 2 Ry:

k=0
Substituting now the series expansion form of (24) into (16)we get

l )é K (71)k k7+j|_
P ()= 5+( net Ly (k+D) 1 o tX2Ry;
k=0

and expressing the in nite series using the integer powerk, and the fact that
sgnx)x = jxj, x 2 R, we nally derive the series expansions as in (22). [
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Corollary 6. For the negative-orderedX N (; 2) with = 12 R,
n2 N, n 2 we obtain the c.d.f.'sFx as nite series expansion, i.e.,
1+sgn sgn X 1k -
2 2exp n *— o K!

Proof. Applying the following known nite expansion form of the upp er incom-
plete gamma function,

X 1k
(nmx)=(n 21le* ?; X2R; n2N = NnNO;
k=0
into (17) we readily get (25). [
Example 7. For the ( 1)-ordered normally distributed X 1 N 1(; 2) we
have q
X
1+ sgn(x 1+2 ~—
Fx L0 = T ) g ) g
2exp 2 X —

while for the ( 1=2)-ordered normally distributed X 1o, N 1(; 2),itis

qs X (ﬂ: X 2
_ l+sgn(x ) 1437 =— +9° =—
FX 1:2(X)_ 2 Sgn(x ) Zexp 3(.; .

Table 1 provides the probability values Fx (x) = PrfX xg, for x = 3

2;:::;3forvariousX N (0;1). The column forx = 0 is omitted as Fx (0) =
1=2 for every value (N (0;1) is a symmetric distribution around the mean 0).
Moreover, the last column provide also the 1st quartile pois Qx (1=4) of X ,
i.e., PrfX Qx (1=4)g = 1=4 for various values. For the 3rd quartile points
Qx (34),itis Qx (3=4) = Qx (1=4) due to the symmetric form of the -GND
around the mean 0. These quartiles evaluated using the quaiie function of X |,

Qx (P) =inf x2RjFx (X) P
h it

(26) = sgneP 1) — ! —Lijop g . P 2(0;1);

for P = 1=4;3=4, that derived through (17). The values of the inverse upper
incomplete gamma function  1(—2; ) were numerically calculated.
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Table 1. Probability mass valuesFyx (x) for various x 2 R as well as the 1st quartile
points Qx (1=4), for certainr.v. X N (0;1).

Fx (3 Fx (2) Fx (1) Fx 1) Fx 2 Fx 3 Qx (3)

50 0.0260 0.0690 0.1846 0.8154 0.9310 0.9740 0:6936
10 0.0304 0.0742 0.1869 0.8131 0.9258 0.9696 0:6951
5 0.0357 0.0802 0.1895 0.8105 0.9198 0.9643 0:6967

2 0.0502 0.0950 0.1958 0.8042 0.9050 0.9498 0:7004

1 0.0699 0.1131 0.2030 0.7970 0.8869 0.9301 0:7042
1= 0.0970 0.1361 0.2116 0.7884 0.8639 0.9030 0:7082
1=10 0.1656 0.1889 0.2299 0.7701 0.8111 0.8344 0:7142
1 0. 0. 0. 1. 1. 1. 0:5
2 0.0013 0.0228 0.1587 0.8413 0.9772 0.9987 0:6745
3 0.0071 0.0402 0.1699 0.8301 0.9598 0.9929 0:6833
4 0.0112 0.0480 0.1742 0.8258 0.9520 0.9888 0:6865
5
0
0

0.0138 0.0523 0.1765 0.8235 0.9477 0.9862 0:6881

1 0.0193 0.0604 0.1805 0.8195 0.9396 0.9807 0:6909
5 0.0238 0.0663 0.1833 0.8167 0.9337 0.9762 0:6927
1 0.0249 0.0677 0.1839 0.8161 0.9323 0.9751 0:6931

Figure 1 illustrates Theorem 2 with X N (0;1) in a compact form, including
all the c.d.f. Fx (x) forevery 2 [ 10,0)[ [1,10] andx 2 [ 3;3]. The known
c.d.f. of the Uniform ( = 1) and Normal ( = 2) distributions are also de-
picted. The c.d.f. of N = 10(0; 1), which approximates the c.d.f. of the Laplace
distribution L(0;1) = N (0;1), as well as the c.d.f. ofN ¢.005(0; 1), which
approximates the degenerate Dirac distributionD(0), are clearly presented. No-
tice the smooth{bringing of Fx (x) between these signi cant distributions which
are included into the -GND family of distributions for 2 R[flgn (0;1).
Moreover, upon the formed surface, the quantile functiongQyx (P) are depicted
as curves withP = 0:05;0:1;:::0:95 with the 1st and 3rd quartile Qx (1=4) and
Qx (3=4) distinguished.

From (1) and (12) or (17) the following holds.

Corollary 8. The hazard rate hx = fx =1 Fx ) of a -order normally
distributed random variable X N (; ?2) is given by
n o]
_l)l= exp —ijX—j 1
(27) hx (x) = , X2R;
_ 1. 1x N1
— (")
or
n o]
(—) exp T
(28) hx (x) = T X2 R;

1 sgnx )9 ——j—]
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— Qx,(p), p€(0,1)
-~ Qx, (1/4)
— Qx,(1/2) = Med(X,)

0.1)

— X _p.005 =~ D(0)
......... X1 ~U(=1,1)
== X5 ~ N(0,1)
« X102 £(0,1)

Figure 1. Surface graph of all the c.d.f. Fx (x) along x-axis and -axis, where X
N (0;1) as well as the quantile functionsQx (P), P 2 [0; 1] (surface curves).

whereq(a;x) = ( a) ( a;x),x2 R, a2 R., being the lower incomplete gamma
function.

Example 9. For the Laplace distributed random variableY :=X 1 N 1 (; 2)
= L(; ), usingthe factthatq(l;x)=1 €&, x2R,(28)for ! 1 ,canbe
written as

2expfj Y—jg 1, for y

(29) hv(y)= . for y>

which is the hazard rate of the Laplace distribution, as expéed.

Figure 2 illustrates also in a compact form, the hazard ratesof X N (0;1)
forevery 2 [ 10,0)[ [1;10] andx 2 [ 3;3]. The hazard rate of the Uniform
( =1) and Normal ( = 2) distributions are clearly depicted. The hazard rate
of N = 10(0;1), which approximate the hazard rate of the Laplace distribution
L(0;1)= N1 (0;1), as well as the one olN (.905(0; 1), which approximates the
degenerate Dirac distribution D(0), are also distinguished.

The truncated -GND can be derived through the p.d.f. and c.d.f. of a
univariate r.v. from N (; 2). Recall the p.d.f. fx asin (1) and c.d.f. Fx as
in (11). We shall say that X follows the right-truncated -GND at x =  with
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Figure 2. Surface graph of all the hazard rateshy (x) along x-axis and -axis, where
X N (0;1).

p.d.f. f§ when

8
20 if x>
30 fo(x; )= ct n 0
(30) x (X )= fx(x) _ op 1A T i x
Fx() Fx()
Similarly, the -GND r.v. X is aleft-truncated -GND r.v. at x = , when
(31) 8
20 if x<;
fx(a )=, fx _ € " _1X_710; if x

1 Fx() 1 Fx()_oP

The Lognormal distribution can be also nicely extended to the -order Lognormal
distribution, or -GLND, in the sense that if X N (; 2)then €* will follow
the -GLND, ie., € LN (; )isa -orderlognormally distributed r.v. The
p.df. of X LN (; )isthen given by

n o]

(32) ogx (X)= ifigx (logx)= Clx lexp —Lj9* =71 . x2R,;

aslogX N (; 2.
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3. Maximum likelihood estimation

Let X = fX31;X2;:::;Xng be a random sample drawn from (1) withn di erent
values. The log-likelihood function(; ; ; X) is then given by
X X1on o]
Gos o X)= logfx (Xis ) = logCP  3logj j —Q(Xi)X ¥
i=1 i=1
x -
(33) = nlogC? Glogj j — (X )T X ) * 9

i=1
3.1. Univariate case

For the univariate caseN (; 2) with known , it is

(5 %4 X) = nlogC* Blog 2 (—) T X ot
i=1
n ) X _
(34) = nlog 3 (—Lep] (—H T 2T o
i=1
The partial derivatives are
N X )
26y T T )
i=1
- 1
(35) = Toosgn®Xi o )X )T
i=1
@ ) X 2
(36) G = A T T
@ i=1
N X
2 3
@) GG A= T X
i=1
@‘ 2 23 4.5 X1 . JR—
38 —=(; = S+ 225 1 X 1:
( ) @ )2( ) 2 4 4( 1) i:lj | J
@ ) 23 X 2
—0 V= g T X I )
@ @° ¢ i=1
2.3 1
(39) = 1 ¢ sgn(Xi ) (Xi ) I

i=1
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Figure 3. Graphs of thed( ; X; ) values along 2 [0;5] for various values for the
same random sampleX .

For < Oand > 2, (35) suggests that the log likelihood haan points of non-
di erentiality. In general, (35) does not have an explicit solution. Nevertheless,
there are examples of estimates that can be found explicitly

Example 10. For the Laplace distributed random variableX N ; (; ?) =
L(; ), the MLE of is = MedfXjg.

Example 11. For the Normal gistributed random variable X N »(; ?) =
N(; ) the MLEof is~=21" T, Xj.

Figure 3 illustrates part of the function d( ; X; ) = P X j T for a
random sample X = fXq;X5;:::; X109 and various values of . One can see
the point of non-di erentiality and that as goes to in nity the line tends to a
polygonal one. For < 1, from (36), we derive that *(; 2; X) is a union of
convex curves and this suggest that maximum is at one of the(;'s.

On the other hand, (37) is always explicitly solved and the MLE of 2, when

is known, is given by,

(40) SEE A
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Figure 4. Graphs of 2( ; X; )along 2 [0;5] for various values for the same random
sample X ..

Figure 4 illustrates ~2( ; X; ) values as in (40).
The MLE of is asym-ptotically unbiased, see [4] and [7], and its asymjotic
variance is given by,
1
2= (—) A2.

(%)

(41) Varn = 1(—4)

When is unknown, Chiodi in [4] gives an unbiased estimate for the ~— T which
is given by

(42) I R
20 1)
and its asymptotic sampling distribution is given by

(43) f(x)= (—;xc le X

i.e., a Gamma distribution with

=n(771) and c=n— 1
1
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When is known, Lunetta in [13] gives the asymptotic sampling distibution

[

i.e., a Gamma distribution with the same and ®= c+1=2.
The asymptotic matrix of variance of the maximum likelihood estimators (*,
M), i.e., the inverse of the Fisher's information matrix is given by
n 2 #
2(. 1@ 1=)(_)7 0

1 1= 1
(45) | 1= = ) 1

0 1. x

(44) f(x)= e’

This implies, that the parameters and are orthogonal, according to the
Fisher's information matrix.
If the shape parameter is unknown, then

-1
— | X X I
og  Xi T X T TlogiXi ]
Cn T T |
where (x) = dixlog ( x) the digamma function. It is obvious that the latter
can not be solved explicitly. The asymptotic variance/covaiance matrix of the
MLE's of (;; ) is given by,

20 @ 1=) —2 3
—a=y —(—1) 50 0
(46) | 1=§ 0 2 1 14 #B\_ ( 1)32_2;
A ( 1
0 ( 1)3B— 5

whereA =[ logd H+ 2 1B =@ 1) 92 1) 1and Yx)is
the trigamma function, [1]. This implies, that the  parameter is orthogonal to

but not to , according to the Fisher's information matrix. The proof follows
the one found in [2].

Mineo and Ruggieri in [8], has presented the usefulormalp R package which
among others, contains the paramp() function that estimates the location param-
eter and the scale parameter by means of the maximum likelihood method,
by considering the two cases when is known and when it is unknown. Never-
theless, when it is unknown, the estimate ofp = =( 1) is obtained through
the index of kurtosis V I, [7].
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3.2. Multivariate case

For the multivariate case NP(; ) with known , we obtain

. X0 ,
(@) %=izlo<xi)w i)
. xXn 2
) n T REGQEOE T
i=1

€ 2

3 REXDQXDIZ D p;

i=1
whereR(x)= (x )x )T 'and beingthe element-wise (Hadamard)

product on matrices, see [10] and [5]. For =2 we obtain

: X0 X
@L) - 1. RXD+ 53 *1p 3 RX) Iy
@ i=1 i=1
with solution
X
= nt XX

and coincides with the one for the Normal distribution, [9].
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