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Abstract

Let G be a graph with n vertices and ν(G) be the matching number of
G. The inertia of a graph G, In(G) = (n+, n−, n0) is an integer triple
specifying the numbers of positive, negative and zero eigenvalues of the
adjacency matrix A(G), respectively. Let η(G) = n0 denote the nullity
of G (the multiplicity of the eigenvalue zero of G). It is well known that if
G is a tree, then η(G) = n− 2ν(G). Guo et al. [Ji-Ming Guo, Weigen Yan
and Yeong-Nan Yeh. On the nullity and the matching number of unicyclic
graphs, Linear Algebra and its Applications, 431 (2009), 1293–1301.] proved
if G is a unicyclic graph, then η(G) equals n − 2ν(G) − 1, n − 2ν(G) or
n − 2ν(G) + 2. Barrett et al. determined the inertia sets for trees and
graphs with cut vertices. In this paper, we give the nullity of bicyclic graphs
B++
n . Furthermore, we determine the inertia set in unicyclic graphs and
B++
n , respectively.
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1. Introduction

Let G = (V (G), E(G)) be a simple graph with vertex set V (G) = {v1, . . . , vn} and
edge set E(G). The inertia of a graph G, In(G) = (n+, n−, n0) is an integer triple
specifying the numbers of positive, negative and zero eigenvalues of the adjacency
matrix A(G), respectively. It is well known if G is a bipartite graph, then n+ =
n−. Barrett, Hall, and Loewy [1] determined the inertia sets for trees and graphs
with cut vertices. The nullity of G, denoted by η = η(G) = n0, is the multiplicity
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of the number zero in the spectrum of G. Then n+ + n− = n − r(A(G)) =
η. The nullity of graphs is of interest in chemistry since the occurrence of a
zero eigenvalue of a bipartite graph (corresponding to an alternant hydrocarbon)
indicates the chemical instability of the molecule which such a graph represents.
The question is of interest also for non-alternant hydrocarbons (non-bipartite
graph), but a direct connection with the chemical stability in these cases is not
so straightforward. The nullity has been determined for trees, unicyclic graphs
and bicyclic graphs, respectively [4, 5, 6]. Recently, Gutman and Borovićanin
give a survey on the nullity of graphs.

A unicyclic graph is a simple connected graph with equal numbers of vertices
and edges. For the sake of a convenient description, let Un be the set of unicyclic
graphs with n vertices. A bicyclic graph is a simple connected graph in which
the number of edges equals the number of vertices plus one.

Let Cp and Cq be two vertex-disjoint cycles. Suppose that v1 ∈ Cp, vl ∈ Cq.
Joining v1 and vl by a path v1v2 · · · vl of length l−1, where l ≥ 1 and l = 1 means
identifying v1 with vl, resultant graph, denoted by∞(p, l, q), is called an∞-graph.
Let Pl+1, Pp+1 and Pq+1 be three vertex-disjoint paths, where min{p, l, q} ≥ 1
and at most one of them is 1. Identifying the three initial vertices and terminal
vertices of them, respectively, resultant graph, denoted by θ(p, l, q), is called a
θ-graph (see Figure 1).
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Figure 1

Let Bn be the set of all bicyclic graphs of order n. Bn consists of three types of
graphs: the first type denoted by B+

n is the set of those graphs each of which is
an ∞-graph with trees attached when l > 1; the second type denoted by B++

n is
the set of those graphs each of which is an ∞-graph with trees attached when
l = 1; the third type denoted by θn is the set of those graphs each of which is an
θ-graph with trees attached.

In Section 3, we study the inertia in Un. In Section 4, we give the nullity and
the inertia sets in B++

n , respectively.
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2. Main Lemmas

A matching of G is a collection of independent edges of G. A maximum matching
is a matching with the maximum possible number of independent edges. The size
of a maximum matching of G, i.e., the maximum number of independent edges
of G, is denoted by ν = ν(G).

Denote by ϕ(x) = ϕG(x) the characteristic polynomial of G. Let

ϕ(x) = |xI −A| = xn + a1x
n−1 + a2x

n−2 + · · ·+ an−1x+ an.(1)

Then [2]

ai =
∑
U

(−1)p(U)2c(U) (i = 1, 2, . . . , n),(2)

where the sum is over all subgraphs U of G consisting of disjoint edges and cycles
and having exactly i vertices (called ”basic figures”). If U is such a subgraph,
then p(U) is the number of its components, of which c(U) components are cycles.

Example 1. Let G is a bipartite graph, then G does not contain an odd cycle,
so a2i+1 = 0 (i ≥ 1).

Example 2. Considering equation (1) with equation (2), it is easy to obtain
a1 = 0 and a2 = 2m (m is the number of edges of G). In the following, we
calculate a3 and a4. The subgraphs U of G having exactly 3 vertices consist of
only the cycle C3. Suppose that n∆ is the number of the cycles C3 in G, then
a3 = −2n∆. Let n� and ν2(G)be the number of the cycles C4, and two mutually
disjoint edges in G, respectively, then a4 = ν2(G)− 2n�.

Next, we introduce the well-known Cauchy’s interlacing theorem in matrix theory.

Lemma 3 [2]. Let A be symmetric and A′ be one of its principal submatrices.
Let λ1 ≥ · · · ≥ λn and λ′1 ≥ · · · ≥ λ′m be the eigenvalues of A and A′, respectively.
Then the inequality λi ≥ λ′i ≥ λn−m+i holds for all i = 1, 2, . . . ,m.

Applying the Cauchy’s interlacing theorem to the adjacency matrix A(G) of the
graph G, we have the following corollary.

Corollary 4. Let V0 be the k-subset of G = (V,E) with n vertices (0 ≤ k ≤ n−1),
and G−V0 be the subgraph induced by removing the vertices V0 and their incident
edges. Then λi(G) ≥ λi(G− V0) ≥ λi+k(G) (1 ≤ i ≤ n− k).

The next lemma is useful to the proof of our main results.

Lemma 5 [2]. For a graph G containing a pendent vertex, if the induced subgraph
H of G is obtained by deleting this vertex together with the vertex adjacent to it,
then the relation η(H) = η(G) holds.
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3. The inertia of unicyclic graphs

n this section, we determine the inertia in Un. In order to prove our result, the
following lemma is necessary.

Lemma 6 [5]. Suppose G ∈ Un with the cycle Cl. Then

(1) η(G) = n− 2ν(G)− 1, if ν(G) = l−1
2 + ν(G− Cl);

(2) η(G) = n− 2ν(G) + 2, if G satisfies: ν(G) = l
2 + ν(G−Cl), l ≡ 0 (mod 4)

and no maximum matching contains an edge incident to Cl;

(3) η(G) = n− 2ν(G), otherwise.

If G ∈ Un is a bipartite graph, we know n+ = n− and n+ + n− = n− η(G), then
In(G) = (ν(G)− 1, ν(G)− 1, n− 2ν(G) + 2) or In(G) = (ν(G), ν(G), n− 2ν(G)),
So we only consider those graphs G ∈ Un which are non-bipartite.

Lemma 7. If G ∈ Un is a non-bipartite graph, then In(G) = (ν(G) + 1, ν(G),
n− 2ν(G)− 1), In(G) = (ν(G), ν(G) + 1, n− 2ν(G)− 1) or In(G) = (ν(G), ν(G),
n− 2ν(G)).

Proof. Since G ∈ Un with the cycle Cl is a non-bipartite graph, then l is odd.
Let vi ∈ V (Cl) and di ≥ 3. Suppose that T1, . . . , Tdi are the components of G−vi
where di = d(vi). Let V (Tj) = nj and νj = ν(Tj) (j = 1, . . . , di), so we have∑di

j=1 nj = n−1 and
∑di

j=1 νj = ν(G) or ν(G)−1. And In(Tj) = (νj , νj , nj−2νj).
We discuss two cases in the following.

(1) ν(G) = l−1
2 + ν(G − Cl), then η(G) = n − 2ν(G) − 1 and

∑di
j=1 νj =

ν(G). We know η(G − vi) =
∑di

j=1 η(Tj) = n − 1 − 2
∑di

j=1 νj = n −
2ν(G) − 1. Let λ′1, . . . , λ

′
ν(G), λ

′
ν(G)+1, . . . , λ

′
n−1−ν(G)︸ ︷︷ ︸

n−2ν(G)−1

, λ′n−ν(G), . . . , λ
′
n−1 be

the eigenvalues of G − vi according to nondecreasing order. By Corollary
4, we have λn−ν(G)+1(G) ≤ λ′n−ν(G) < 0 and λν(G)(G) ≥ λ′ν(G) > 0. So

In(G) = (ν(G) + 1, ν(G), n − 2ν(G) − 1) or In(G) = (ν(G), ν(G) + 1,
n− 2ν(G)− 1).

(2) ν(G) 6= l−1
2 + ν(G− Cl), then η(G) = n− 2ν(G) and

∑di
j=1 νj = ν(G)− 1.

We know η(G − vi) =
∑di

j=1 η(Tj) = n − 1 − 2
∑di

j=1 νj = n − 2ν(G) + 1.

Let λ′1, . . . , λ
′
ν(G), λ

′
ν(G)+1, . . . , λ

′
n−ν(G)+1︸ ︷︷ ︸

n−2ν(G)+1

, λ′n−ν(G)+2, . . . , λ
′
n−1 be the eigen-

values of G − vi according to nondecreasing order. By Corollary 4, we
have λn−ν(G)+2(G) ≤ λ′n−ν(G)+1 < 0 and λν(G)(G) ≥ λ′ν(G) > 0. And

η(G) = n− 2ν(G), so In(G) = (ν(G), ν(G), n− 2ν(G)).
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Basing on the above detailed account, we obtain the next theorem.

Theorem 8. If G ∈ Un, then In(G) = (ν(G) − 1, ν(G) − 1, n − 2ν(G) + 2),
(ν(G), ν(G), n − 2ν(G)), (ν(G) + 1, ν(G), n − 2ν(G) − 1) or (ν(G), ν(G) + 1,
n− 2ν(G)− 1).

4. The inertia of bicyclic graphs

In this section, we only consider B++
n . For G ∈ B++

n , we give the nullity of G and
determine the inertia of G according to ν(G), respectively.

Lemma 9. The graph ∞(p, 1, q) is defined as above, then

(1) η(∞(4s, 1, 4t+ 2)) = 1 (s, t ≥ 1);

(2) η(∞(4s, 1, 4t)) = 3 (s, t ≥ 1).

Proof. Let ϕ1(x) = |xI −A| = xn + a1x
n−1 + a2x

n−2 + · · ·+ a4s+4tx+ a4s+4t+1

and ϕ2(x) = |xI −B| = xn + b1x
n−1 + b2x

n−2 + · · ·+ b4s+4t−2x+ b4s+4t−1 be the
polynomials of∞(4s, 1, 4t+2) and∞(4s, 1, 4t), respectively. Since∞(4s, 1, 4t+2)
and ∞(4s, 1, 4t) are bipartite graph, so by the equation (2), we have a2i+1 = 0
and b2i+1 = 0 for i ≥ 1. First of all, we consider a4s+4t using the equation (2),
then a4s+4t = 2m1(−1)2t+1 + 2m2(−1)2s + (2m1 + 2m2) 6= 0, where m1 is the
number of methods picking up 2t disjoint edges from P4t+1 and m2 is the number
of methods picking up 2s−1 disjoint edges from P4s−1. So η(∞(4s, 1, 4t+2)) = 1.

Next, we prove b4s+4t−2 = 0 and b4s+4t−4 6= 0. Using the similar method as
above, we have b4s+4t−2 = 2m1(−1)2t + 2m2(−1)2s − (2m1 + 2m2) = 0, where
m1 is the number of methods picking up 2t − 1 disjoint edges from P4t−1 and
m2 is the number of methods picking up 2s − 1 disjoint edges from P4s−1. And
b4s+4t−4 ≥ m3 > 0 where m3 is the number of methods picking up 2t− 1 disjoint
edges from P4t and picking up 2s− 1 disjoint edges from P4s−1. So we complete
the proof.

Using the similar method of proof in Lemma 9 and the equation (2), we obtain
the following lemma.

Lemma 10. The graph ∞(p, 1, q) is defined as above, then

(1) η(∞(2s+ 1, 1, 4t)) = η(∞(4s+ 1, 1, 4t+ 3)) = 1;

(2) η(∞(2s+ 1, 1, 4t+ 2)) = η(∞(4s+ 1, 1, 4t+ 1)) = 0.

Lemma 11 [3]. If a bipartite graph G with n ≥ 1 vertices does not contain any
cycle of length 4s (s ≥ 1), then η(G) = n− 2ν(G).
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In accordance with Lemma 11, it is easy to know for G ∈ B++
n is a bipartite

graph with not containing cycle C4s (s ≥ 1), then η(G) = n− 2ν(G), so In(G) =
(ν(G), ν(G), n− 2ν(G)). Hence in the following, we discuss the case G ∈ B++

n is
a bipartite graph with containing cycles C4s (s ≥ 1).

Lemma 12. If G ∈ B++
n is a bipartite graph with containing cycle C4s (s ≥ 1),

then η(G) = n− 2ν(G) or η(G) = n− 2ν(G) + 2.

Proof. Putting to use the Lemma 5 a times, we can obtain the following cases:

(1) Ti (1 ≤ i ≤ s) are the components where Ti (1 ≤ i ≤ s) are trees with ni
vertices. Then η(G) =

∑s
i=1 η(Ti) =

∑s
i=1(ni− 2ν(Ti)) = n− a− 2(ν(G)−

a) = n− 2ν(G).

(2) U0, Ti (1 ≤ i ≤ s) are the components where Ti (1 ≤ i ≤ s) are trees with ni
vertices and U0 is a unicyclic graph with n0 vertices. By Lemma 6, we know
η(U0) = n0 − 2ν(U0) or n0 − 2ν(U0) + 2, so η(G) = η(U0) +

∑s
i=1 η(Ti) =

n− 2ν(G) or n− 2ν(G) + 2.

(3) ∞(p, 1, q), Ti (1 ≤ i ≤ s) are the components where Ti (1 ≤ i ≤ s) are
trees with ni vertices and ∞(p, 1, q) is a bicyclic graph with n0 vertices.
By Lemma 9, we have η(∞(4s, 1, 4t+ 2)) = 1 or η(∞(4s, 1, 4t)) = 3. Then
η(G) = η(∞(p, 1, q)) +

∑s
i=1 η(Ti) = n− 2ν(G) or n− 2ν(G) + 2.

Combining Lemmas 10 and 12, we obtain the following theorem.

Theorem 13. If G ∈ B++
n is a bipartite graph, then η(G) = n − 2ν(G) or

η(G) = n− 2ν(G) + 2.

Lemma 14. If G ∈ B++
n is a non-bipartite graph, then η(G) = n − 2ν(G) −

1, n− 2ν(G), n− 2ν(G) + 1 or η(G) = n− 2ν(G) + 2.

Proof. Putting to use the Lemma 5 b times, we can obtain the following cases:

(1) Ti (1 ≤ i ≤ s) are the components where Ti (1 ≤ i ≤ s) are trees with ni
vertices. Then η(G) =

∑s
i=1 η(Ti) = n− 2ν(G).

(2) U0, Ti (1 ≤ i ≤ s) are the components where Ti (1 ≤ i ≤ s) are trees
with ni vertices and U0 is a unicyclic graph with n0 vertices. By Lemma
6, we know η(U0) = n0 − 2ν(U0), n0 − 2ν(U0) + 2 or n0 − 2ν(U0) − 1, so
η(G) = η(U0) +

∑s
i=1 η(Ti) = n− 2ν(G), n− 2ν(G) + 2 or n− 2ν(G)− 1.
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(3) ∞(p, 1, q), Ti (1 ≤ i ≤ s) are the components where Ti (1 ≤ i ≤ s) are
trees with ni vertices and∞(p, 1, q) is a bicyclic graph with n0 vertices. By
Lemma 10, we have η(∞(2t + 1, 1, 4s)) = 1, η(∞(2t + 1, 1, 4s + 2)) = 0,
η(∞(4s + 1, 1, 4t + 1)) = 0 or η(∞(4s + 1, 1, 4t + 3)) = 1. Then η(G) =
η(∞(p, 1, q)) +

∑s
i=1 η(Ti) = n− 2ν(G) + 1, n− 2ν(G) or n− 2ν(G)− 1.

Using the similar method of Lemma 7 and Lemma 14, we have the next lemma.

Lemma 15. If G ∈ B++
n is a non-bipartite graph, then In(G) = (ν(G), ν(G) +

1, n−2ν(G)−1), (ν(G)+1, ν(G), n−2ν(G)−1), (ν(G), ν(G), n−2ν(G)), (ν(G),
ν(G)− 1, n− 2ν(G) + 1), (ν(G) + 1, ν(G)− 2, n− 2ν(G) + 1), (ν(G), ν(G)− 2,
n− 2ν(G) + 2).

So we obtain our main result.

Theorem 16. If G ∈ B++
n , then In(G) = (ν(G), ν(G)+1, n−2ν(G)−1), (ν(G)+

1, ν(G), n− 2ν(G)− 1), (ν(G), ν(G), n− 2ν(G)), (ν(G), ν(G)− 1, n− 2ν(G) + 1),
(ν(G) + 1, ν(G)− 2, n− 2ν(G) + 1), (ν(G), ν(G)− 2, n− 2ν(G) + 2).

Remark 17. The paper is supported by the National Natural Science
Foundation 205 for Young Scholar of China (11101284), China Scholarship
Council (201208310422) and Shanghai Municipal Natural Science Foundation
(11ZR1425100).
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