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Abstract

Let k be a positive integer and G = (V,E) a graph of order n. A
subset S of V is a k-independent set of G if the maximum degree of the
subgraph induced by the vertices of S is less or equal to k − 1. The
maximum cardinality of a k-independent set of G is the k-independence
number βk(G). In this paper, we show that for every graph G, βk(G) ≥
⌈(

n+ (χ(G)− 1)
∑

v∈S(G) min(|Lv| , k − 1)
)

/χ(G)
⌉

, where χ(G), s(G) and

Lv are the chromatic number, the number of supports vertices and the num-
ber of leaves neighbors of v, in the graph G, respectively. Moreover, we
characterize extremal trees attaining these bounds.
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1. Introduction

Let G be a simple graph with vertex set V and edge set E. The number of vertices
of G is called the order, and is denoted by n = n(G). The open neighborhood

N(v) = NG(v) of a vertex v consists of all vertices adjacent to v and d(v) =
dG(v) = |N(v)| is the degree of v. The closed neighborhood of a vertex v is defined
by N [v] = NG [v] = NG (v)∪{v}. By ∆ = ∆(G), we denote the maximum degree
of the graph G. A vertex of degree one is called a leaf and its neighbor is called
a support vertex. If v is a support vertex then Lv will denote the set of the
leaves adjacent to v. If v is support vertex with |Lv| ≥ 2, then v is called strong

support, else v is called weak support. We denote by S(G) and L(G) the set of
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support vertices and the set of leaves, respectively, and we let s(G) = |S(G)| and
ℓ(G) = |L(G)|. For a subset A ⊆ V (G), we denote by 〈A〉 the subgraph induced

by the vertices of A.

A caterpillar is a tree T with the property that the removal of its leaves
results in a path. The resulting path u1u2 · · ·us is referred to as the spine of
the caterpillar and the leaves are called the legs of the caterpillar. A sequence of
nonnegative integers (t1, t2, . . . , ts) where ti is the number of leaves (legs) adja-
cent to ui for s ≥ 1 is associated with T . However, we denote a caterpillar by
C(t1, t2, . . . , ts). For example, the star K1,p is the caterpillar C(p) with a spine
u1 and p legs.

We define the following special caterpillars which are used in this paper, we
denote by

G1(u) = C(t1,m, t2) where |Lu| = m with k − 2 ≤ m ≤ k − 1 and 1 ≤ t1,

t2 ≤ k − 2.

G2(u) = C(t1, t2, k−1) where |Lu| = k−1, 1 ≤ t1 ≤ k−2 and 1 ≤ t2 ≤ k−3.

F1(v) = C(k − 1,m, t) where |Lv| = m, 0 ≤ m ≤ k − 1 and 1 ≤ t ≤ k − 1.

F2(v) = C(t, k − 2,m) where |Lv| = m, 0 ≤ m ≤ k − 1 and 1 ≤ t ≤ k − 2.

Let k be a positive integer. A subset S of V is k-independent of G if the maximum
degree of the subgraph induced by the vertices of S is less or equal to k− 1. The
k-independence number βk(G) is the maximum cardinality of a k-independent
set of G. Notice that 1-independent sets are the classical independent sets, and
so β1(G) = β(G). If S is a k-independent set of G of size βk(G), then we call S
a βk(G)-set. General concept p-independence, where p is a hereditary property
of graphs, was introduced by S.T. Hedetniemi in 1973, see [1] and is studied for
example in [5, 6, 7, 8, 9, 10, 11] and elsewhere. Note that Borowiecki and Michalak
[3] gave a generalization of the concept of k-independence by considering other
hereditary-induced properties than the property for a subgraph to have maximum
degree at most k−1. Clearly if k > ∆, then the vertex set V (G) is k-independent
and in this case βk(G) = n. Therefore in this paper, we will assume that k is an
integer with k ≤ ∆.

A p-coloring of a graph G is a function defined on V into a set of colors
{1, 2, . . . , p} such that any two adjacent vertices have different colors. Each set
of vertices colored with one color is an independent set of vertices of G. The
minimum cardinality p for which G has p-coloring is the chromatic number χ(G)
of G. The parameter χ(G) has been extensively studied by many authors. One of
the classical results concerning the chromatic number of a graph is due to Brooks
[4].

Theorem 1. For any graph G, χ(G) ≤ ∆+ 1, with equality if and only if either

∆ 6= 2 and G has a subgraph K∆+1 as a connected component or ∆ = 2 and G
has a cycle C2k+1 as a connected component.



A Characterization of Trees for a New Lower Bound ... 397

It is well known that bipartite graphs satisfy β(G) ≥ n(G)/2. In [12] Volkmann
gave a constructive characterization of trees T satisfy β(T ) = ⌈n(T )/2⌉. Also, in
[2] Blidia et al. proved that bipartite connected graphs G of order n ≥ 2 with
s(G) support vertices satisfy β2(G) ≥ (n + s(G))/2, and gave a constructive
characterization of trees attaining this bound.

In this paper, we generalize the above results by giving a new lower bound on
βk(G) in terms of the order, the chromatic number and the number of supports
vertices. Moreover, we characterize extremal trees attaining this bound.

2. Lower Bound

Theorem 2. Let G be a graph of order n with a chromatic number χ(G) and k
be an integer with 2 ≤ k ≤ ∆. Then

βk(G) ≥
⌈(

n+ (χ(G)− 1)
∑

v∈S(G)min(|Lv| , k − 1)
)

/χ(G)
⌉

,

and this bound is sharp.

Proof. The result can be easily checked if G is a union of cliques. Thus we
assume that G is not a union of cliques and let C be a set of leaves defined as
follows: for each support vertex v of G we put in C exactly min(|Lv| , k − 1)
of its leaves. So |C| =

∑

v∈S(G)min(|Lv| , k − 1). Let A1, A2, . . . , Aχ(G) be a
χ(G)-coloration of the subgraph induced by the vertices of V (G) − C. Without
loss of generality, we can assume that |A1| ≤ |A2| ≤ · · · ≤

∣

∣Aχ(G)

∣

∣. Note that
χ(G) = χ 〈V (G)− C〉. Then we have n − |C| = |A1| + |A2| + · · · +

∣

∣Aχ(G)

∣

∣ ≤
χ(G)

∣

∣Aχ(G)

∣

∣, and hence
∣

∣Aχ(G)

∣

∣ ≥ (n − |C|)/χ(G). Now, since Aχ(G) ∪ C is
k-independent, βk(G) ≥

∣

∣Aχ(G) ∪ C
∣

∣ ≥ (n − |C|)/χ(G) + |C|. It follows that
βk(G) ≥ (n+ (χ(G)− 1) |C|)/χ(G), and so

βk(G) ≥
⌈(

n+ (χ(G)− 1)
∑

v∈S(G)min(|Lv| , k − 1)
)

/χ(G)
⌉

.

That this bound is sharp may be seen for trees by the following characteriza-
tion and for graphs different from trees by the graph obtained from a clique by
attaching k − 1 vertices to each vertex of the clique, then for an integer k with
2 ≤ k ≤ ∆ equality holds in the general bound.

Note that χ(G) = 2 for every bipartite graphs G having at least one edge. Hence,
as immediate consequences to Theorems 1 and 2, we obtain the following corol-
laries.

Corollary 3. Let G be a graph of order n and maximum degree ∆, and k be an
integer with 2 ≤ k ≤ ∆. Then

βk(G) ≥
⌈(

n+∆
∑

v∈S(G)min(|Lv| , k − 1)
)

/(∆ + 1)
⌉

.
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Corollary 4. Let T be a tree of order n, and k be an integer with 2 ≤ k ≤ ∆.

Then βk(T ) ≥
⌈(

n+
∑

v∈S(T )min(|Lv| , k − 1)
)

/2
⌉

.

3. Characterization

Our aim in this section is to gave a characterization of trees attaining the lower
bound in Corollary 4. Note that the difference between the two sides of the
inequality can be made arbitrarily large even for trees. To see this, we consider
a caterpillar T = C(t1, t2, . . . , t2p) where ti = t > k for every i : 1 ≤ i ≤ 2p. It is

easy to verify that βk(T )−
⌈(

n+
∑

v∈S(T )min(|Lv| , k − 1)
)

/2
⌉

= p(t− k).

The following result that can be found in [2] is straightforward.

Lemma 5. For k ≥ 1, let w be a vertex of a graph G′′ such that every neighbor

of w has degree at most k, at least w or one of its neighbors has degree k or

more, and every vertex in V (G′′)\N [w], if any, has degree less than k in G′′. Let

G′ be any graph and G the graph constructed from G′ and G′′ by adding an edge

between w and any vertex of G′. Then βk(G) = βk(G
′) + |V (G′′)| − 1.

For k ≥ 2, we define the family H(k) of all nontrivial trees T that can be obtained
from a sequence T0, T1, . . . , Tp (p ≥ 1) of trees, where T0 is either C(t) with
1 ≤ t ≤ k + 1, C(t, k − 1) or C(t, k), with 1 ≤ t ≤ k − 2 and k ≥ 3, or G1(u)
with k ≥ 3 or G2(u) with k ≥ 4, T = Tp, and if p ≥ 2, then Ti+1 can be obtained
recursively from Ti by one of the following operations.

Operation H1(k). Add a copy of a caterpillar C(k) attached by an edge
between any vertex of C(k) and a vertex v of Ti, with the condition that if v is
a leaf in Ti, then its support vertex z in Ti satisfies |Lz| ≥ k.

Operation H2(k). Add a copy of a caterpillar C(k + 1) centred in u, at-
tached by an edge uv at a vertex v of Ti, with the condition that n(Ti) +
∑

x∈S(Ti)
min(|Lx| , k − 1) is even, and if v is a leaf in Ti, then its support vertex

z in Ti satisfies |Lz| ≥ k.

Operation H3(k). For k ≥ 3, add a copy of a caterpillar C(t, k − 1) with
1 ≤ t ≤ k − 2 and supports vertices u1, u, where |Lu1

| = t, attached by an edge
uv at a vertex v of Ti, with the condition that if v is a leaf in Ti, then its support
vertex z in Ti satisfies |Lz| ≥ k.

Operation H4(k). For k ≥ 3, add a copy of a caterpillar C(t, k) with 1 ≤
t ≤ k − 2 and supports vertices u1, u, where |Lu1

| = t, attached by an edge uv
at a vertex v of Ti, with the condition that n(Ti) +

∑

x∈S(Ti)
min(|Lx| , k − 1) is

even, and if v is a leaf in Ti, then its support vertex z in Ti satisfies |Lz| ≥ k.
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Operation H5(k). For k ≥ 3, add a copy of the caterpillar G1(u), at-
tached by an edge uv at a vertex v of Ti, with the condition that n(Ti) +
∑

x∈S(Ti)
min(|Lx| , k − 1) is even, and if v is a leaf in Ti, then its support vertex

z in Ti satisfies |Lz| ≥ k.

Operation H6(k). For k ≥ 4, add a copy of the caterpillar G2(u), at-
tached by an edge uv at a vertex v of Ti, with the condition that n(Ti) +
∑

x∈S(Ti)
min(|Lx| , k − 1) is even, and if v is a leaf in Ti, then its support vertex

z in Ti satisfies |Lz| ≥ k.

Operation H7(k). For k ≥ 3, add a copy of a caterpillar C(t, k − 1) with
1 ≤ t ≤ k−2 and supports vertices u1, u, where |Lu| = k−1, attached by an edge
uv at a vertex v of Ti, with the condition that n(Ti) +

∑

x∈S(Ti)
min(|Lx| , k − 1)

is even, and v is a leaf in Ti of support vertex z satisfies |Lz| ≤ k − 1.

Operation H8(k). Add a copy of a caterpillar C(k) attached by an edge
between any vertex of C(k) and a vertex v of Ti, with the condition that n(Ti)+
∑

x∈S(Ti)
min(|Lx| , k−1) is even, and v is a leaf in Ti of support vertex z satisfies

|Lz| ≤ k − 1.

OperationH9(k). Add a copy of a caterpillar C(k−1,m) with 1 ≤ m ≤ k−1
and supports vertices u1, u, where |Lu| = m, attached by an edge uv at a vertex
v of Ti, with the condition that if v is a leaf in Ti, then its support vertex z in Ti

satisfies |Lz| ≥ k.

OperationH10(k). Add a copy of a caterpillar C(k−1, k) of supports vertices
u1, u, where |Lu| = k, attached by an edge uv at a vertex v of Ti, with the
condition that n(Ti) +

∑

x∈S(Ti)
min(|Lx| , k − 1) is even, and if v is a leaf in Ti,

then its support vertex z in Ti satisfies |Lz| ≥ k.

Operation H11(k). Add a copy of the caterpillar F1(u), attached by an edge
uv at a vertex v of Ti, with the condition that n(Ti) +

∑

x∈S(Ti)
min(|Lx| , k− 1)

is even, and if v is a leaf in Ti, then its support vertex z in Ti satisfies |Lz| ≥ k.

Operation H12(k). For k ≥ 3, add a copy of the caterpillar F2(u), at-
tached by an edge uv at a vertex v of Ti, with the condition that n(Ti) +
∑

x∈S(Ti)
min(|Lx| , k − 1) is even, and if v is a leaf in Ti, then its support vertex

z in Ti satisfies |Lz| ≥ k.

OperationH13(k).Add a copy of a caterpillar C(k−1,m) with 1 ≤ m ≤ k−1
and supports vertices u1, u, where |Lu| = m, attached by an edge uv at a vertex
v of Ti, with the condition that n(Ti) +

∑

x∈S(Ti)
min(|Lx| , k − 1) is even, and v

is a leaf in Ti of support vertex z satisfies |Lz| ≤ k − 1.

Lemma 6. Let T be a nontrivial tree and k be an integer with 2 ≤ k ≤ ∆. If

T ∈ H(k), then βk(T ) =
⌈(

n(T ) +
∑

x∈S(T )min(|Lx| , k − 1)
)

/2
⌉

.
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Proof. For 2 ≤ k ≤ ∆(T ), let T be any tree of H(k). We proceed by induction
on the number of operations Hi where 1 ≤ i ≤ 13, performed to construct T .
The property is true for T0 = C(t) with 1 ≤ t ≤ k + 1, C(t, k − 1) or C(t, k)
with 1 ≤ t ≤ k − 2 and k ≥ 3, G1(u) with k ≥ 3 and G2(u) with k ≥ 4. Suppose
the property is true for all trees of H(k) constructed with j − 1 ≥ 0 operations
and let T be a tree constructed with j operations. Consider the following cases
depending on whether T is obtained by performing OperationH1(k) or Operation
H7(k). We omit the proof for the remaining operations since it is similar to that
used in these two cases.

Suppose that the last operation performed on a tree T ′ already obtained by
j − 1 operations, is H1(k). Then n(T ) = n(T ′) + k + 1 and s(T ) = s(T ′) + 1
because every support of T ′ is a support of T (since if v is a leaf in Ti, then its
support vertex z in Ti satisfies |Lz| ≥ k ≥ 2). Thus

(1)
∑

x∈S(T )
min(|Lx| , k − 1) =

∑

x∈S(T ′)
min(|Lx| , k − 1) + k − 1.

By Lemma 5 and the inductive hypothesis applied on T ′ we have, βk(T ) =

βk(T
′) + k =

⌈(

n(T ′) +
∑

x∈S(T ′ )min(|Lx| , k − 1)
)

/2
⌉

+ k.

Now, if n(T ′) +
∑

x∈S(T
′
)min(|Lx| , k − 1) is even, then by using n(T ) =

n(T ′) + k + 1 and formula (1), we obtain

βk(T ) =
(

n(T ′) + 2k +
∑

x∈S(T
′
)min(|Lx| , k − 1)

)

/2

=
(

n(T ) +
∑

x∈S(T )min(|Lx| , k − 1)
)

/2

=
⌈(

n+
∑

x∈S(T )min(|Lx| , k − 1)
)

/2
⌉

.

Also, if n(T ′)+
∑

x∈S(T
′
)min(|Lx| , k−1) is odd, then by using n(T ) = n(T ′)+k+1

and formula (1), we obtain :

βk(T ) =
(

n(T ′) + 1 + 2k +
∑

x∈S(T
′
)min(|Lx| , k − 1)

)

/2

=
(

n(T ) + 1 +
∑

x∈S(T )min(|Lx| , k − 1)
)

/2

=
⌈(

n+
∑

x∈S(T )min(|Lx| , k − 1)
)

/2
⌉

.

In both cases, βk(T ) =
⌈(

n+
∑

x∈S(T )min(|Lx| , k − 1)
)

/2
⌉

.

Suppose now that the last operation performed on a tree T ′ already obtained
by j − 1 operations, is H7(k). Then n(T ) = n(T ′) + k + t+ 1 with 1 ≤ t ≤ k − 2
and s(T ′) + 1 ≤ s(T ) ≤ s(T ′) + 2 (since v is a leaf in Ti whose support vertex z
satisfies |Lz| ≤ k − 1). Thus

(2)
∑

x∈S(T )
min(|Lx| , k − 1) =

∑

x∈S(T ′)
min(|Lx| , k − 1) + k − 1 + t− 1.
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By Lemma 5 and the inductive hypothesis applied on T ′,

βk(T ) = βk(T
′) + k + t =

⌈(

n(T ′) +
∑

x∈S(T
′
)
min(|Lx| , k − 1)

)

/2

⌉

+ k + t.

Since n(T ′)+
∑

x∈S(T ′)min(|Lx| , k−1) is even and by using n(T ) = n(T ′)+k+t+1

and formula (2), we obtain

βk(T ) =

(

n(T ′) + 2k + 2t+
∑

x∈S(T ′ )
min(|Lx| , k − 1)

)

/2

=

(

n(T ) + 1 +
∑

x∈S(T )
min(|Lx| , k − 1)

)

/2

=

⌈(

n+
∑

x∈S(T )
min(|Lx| , k − 1)

)

/2

⌉

.

Now we are ready to give a characterization of trees achieving equality in Corol-
lary 4.

Theorem 7. Let T be a nontrivial tree and k be an integer with 2 ≤ k ≤ ∆.

Then βk(T ) =
⌈(

n(T ) +
∑

x∈S(T )min(|Lx| , k − 1)
)

/2
⌉

if and only if T ∈ H(k).

Proof. The sufficient condition follows from Lemma 6.
Conversely, for 2 ≤ k ≤ ∆, let T be a tree of order n with βk(T ) =

⌈(

n+
∑

x∈S(T )min(|Lx| , k − 1)
)

/2
⌉

. Let Y (T ) be the set of vertices of degree

at least k of the tree T . We proceed by induction on |Y (T )|.

If |Y (T )| = 0, then βk(T ) = n =
⌈(

n+
∑

x∈S(T )min(|Lx| , k − 1)
)

/2
⌉

if

and only if n+
∑

x∈S(T )min(|Lx| , k − 1) is odd. Since if n+
∑

x∈S(T )min(|Lx| ,
k− 1) is even, then n =

∑

x∈S(T )min(|Lx| , k− 1), which is impossible. Thus n =
(

n+ 1 +
∑

x∈S(T )min(|Lx| , k − 1)
)

/2, and so n−1 =
∑

x∈S(T )min(|Lx| , k−1).

In this case, if |S(T )| ≥ 2, then n−1 >
∑

x∈S(T )min(|Lx| , k−1), and so |S(T )| =
1 = |{u}|. Hence n−1= |Lu|=

∑

x∈S(T )min(|Lx| , k−1) with |Lu| ≤ k−1. Thus all

stars C(t) with 1 ≤ t ≤ k−1 satisfy βk(T) =
⌈(

n+
∑

x∈S(T )min(|Lx| , k − 1)
)

/2
⌉

.

If |Y (T )| = 1 = |{u}|, then

βk(T ) =
⌈(

n+
∑

x∈S(T )min(|Lx| , k − 1)
)

/2
⌉

= n− 1.

First we assume that n +
∑

x∈S(T )min(|Lx| , k − 1) is even, hence we obtain
n =

∑

x∈S(T )min(|Lx| , k − 1) + 2. Now, if |S(T )| = 1, then n = k + 1 and
so T = C(k) of center u, and if |S(T )| ≥ 2, then let {u1, u2, . . . , up}: p ≥ 1,
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be the set of support vertices descendant from u with 1 ≤ |Lui
| = ti ≤ k − 2;

1 ≤ i ≤ p, k ≥ 3, and |Lu| = m. Since dT (u) ≥ k ≥ 2, if m = 0, then
∑

x∈S(T )min(|Lx| , k − 1) < n− 2, a contradiction. Hence m ≥ 1.

(i) Now, if m ≤ k− 1, then n =
∑p

i=1ti+m+2 = (
∑p

i=1ti + 1)+m+1, and
so |S(T )| = 2. Since dT (u) ≥ k, m ≥ k − 1. Thus m = k − 1 and T = C(t, k − 1)
with 1 ≤ t ≤ k − 2 and k ≥ 3.

(ii) If m ≥ k, then n =
∑p

i=1ti + (k − 1) + 2, and so |S(T )| = 2. If m = k,
then n +

∑

x∈S(T )min(|Lx| , k − 1) = 2k + 2t1 + 1 which is odd, and if m > k,

then βk(T ) >
⌈(

n+
∑

x∈S(T )min(|Lx| , k − 1)
)

/2
⌉

. In both cases we have a

contradiction.
Next we assume that n+

∑

x∈S(T )min(|Lx| , k−1) is odd. Hence βk(T )=n−

1=
(

n+ 1 +
∑

x∈S(T )min(|Lx| , k − 1)
)

/2, implying that n =
∑

x∈S(T )min(|Lx| ,

k − 1) + 3. Now, if |S(T )| = 1, then n = k + 2 and so T = C(k + 1) of cen-
ter u, and if |S(T )| ≥ 2, then as previously, let {u1, u2, . . . , up}: p ≥ 1, be
the set of support vertices descendant from u with 1 ≤ ti = |Lui

| ≤ k − 2;
1 ≤ i ≤ p, k ≥ 3, and |Lu| = m. Since dT (u) ≥ k ≥ 2, if m = 0, then
n =

∑p
i=1ti + 3 = (

∑p
i=1ti + 2) + |{u}|, and so |S(T )| = 2. Hence either

2 = dT (u) ≥ k ≥ 2, and so k = 2 and |Lui
| = ti ≤ 0 for 1 ≤ i ≤ 2, or

1 = dT (u) ≥ k ≥ 2. In both cases we have a contradiction. Hence m ≥ 1.

(i) Now, if m ≤ k − 1, then n =
∑p

i=1ti +m+ 3. Either n = (
∑p

i=1ti + 1) +
m + 2, and so |S(T )| = 2 and p = 1. Since dT (u) ≥ k, m = k − 1, and T is
obtained from T = C(t) with 1 ≤ t ≤ k − 2 by using Operation H1(k). Or
n = (

∑p
i=1ti + 2) + m + 1, hence |S(T )| = 3, p = 2. So dT (u) = m + 2 ≥ k,

implying that k−2 ≤ m ≤ k−1, and thus T is the caterpillar G1(u) with k ≥ 3,
or dT (u) = m + 1 ≥ k, implying that m = k − 1, and thus T is the caterpillar
G2(u) with k ≥ 4.

(ii) If m ≥ k, then n =
∑p

i=1ti + (k − 1) + 3 = (
∑p

i=1ti + 1) + k + 1. Hence
|S(T )| = 2, p = 1 and T = C(t, k) with 1 ≤ t ≤ k − 2 for k ≥ 3.

Now assume that the assertion of the theorem is true for all trees with
|Y (T )| < λ with λ ≥ 2 and let T be a tree of order n such that |Y (T )| = λ.
Root T at a leaf r of maximum eccentricity. Let u be a vertex of degree at least
k, at maximum distance from r and under this condition, of maximum degree.
Since |Y (T )| ≥ 2, u is at distance at least two from r. Let v, z be the parents of
u and v in the rooted tree, respectively and w the parent of z if there exists. We
distinguish between the following two cases.

Case 1. dT (u) ≥ k + 1. Then let T ′ and T ′′ be the components of T − uv,
containing v and u, respectively. Then dT ′′(u) ≥ k and from the choice of u, all
vertices of V (T ′′) \ {u} have degree less than k. Hence u fulfills the conditions on
the vertex w in Lemma 5. Apply the inductive hypothesis to T ′ since |Y (T ′)| <
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|Y (T )|. Moreover |V (T ′′)| = n′′ ≥ k + 1, n(T ′) = n′ = n − n′′ and by Lemma 5
and Theorem 2,

βk(T ) = βk(T
′) + n′′ − 1

≥
⌈(

n′ +
∑

x∈S(T ′)min(|Lx| , k − 1)
)

/2
⌉

+ n′′ − 1.

Suppose that |Lu| = m ≥ 0 and that u has {u1, . . . , up} (possible empty) as
support vertices descendant from u, with 1 ≤ ti = |Lui

| ≤ k − 2 : 1 ≤ i ≤ p
with k ≥ 3, so |S(T ′′ − {u})| = p ≥ 0. Hence, n′′ ≥

∑p
i=1 ti + m + p + 1. Now,

if p = 0, then
∑p

i=1 ti = 0 and m ≥ k, hence m − min(m, k − 1) ≥ 1 and
p+m−min(m, k− 1)− 1 ≥ 0. Also if p ≥ 1, then p+ m−min(m, k− 1)− 1 ≥ 0.
In both cases p+m−min(m, k − 1)− 1 ≥ 0. We consider two subcases.

Subcase 1.1. v is not a leaf, or v is a leaf of support vertex z in T ′, with
|Lz| ≥ k. Then

∑

x∈S(T )min(|Lx| , k−1) =
∑

x∈S(T ′)min(|Lx| , k−1)+min(m, k−

1) +
∑p

i=1 ti.

(a) n′+
∑

x∈S(T ′)min(|Lx| , k−1) is even. By using n′′ ≥
∑p

i=1 ti+m+p+1,

βk(T ) = βk(T
′) + n′′ − 1

≥

(

n′ +
∑

x∈S(T ′)
min(|Lx| , k − 1)

)

/2 + n′′ − 1

=

(

n′ + 2n′′ − 2 +
∑

x∈S(T ′)
min(|Lx| , k − 1)

)

/2

≥

(

p+m−min(m, k − 1)− 1 + n+
∑

x∈S(T )
min(|Lx| , k − 1)

)

/2

≥

(

n+
∑

x∈S(T )
min(|Lx| , k − 1)

)

/2.

Indeed, if n+
∑

x∈S(T )min(|Lx| , k − 1) is even, then
(

n+
∑

x∈S(T )min(|Lx| , k − 1)
)

/2=
⌈(

n+
∑

x∈S(T )min(|Lx| , k − 1)
)

/2
⌉

= βk(T ),
hence we have equality througouth the previous inequality chain, and so p+
m−min(m, k − 1)− 1 = 0 . Also, if n+

∑

x∈S(T )min(|Lx| , k − 1) is odd, then

βk(T ) =

⌈(

n+
∑

x∈S(T )
min(|Lx| , k − 1)

)

/2

⌉

≥

(

n+ 1 +
∑

x∈S(T )
min(|Lx| , k − 1)

)

/2

=

⌈(

n+
∑

x∈S(T )
min(|Lx| , k − 1)

)

/2

⌉

= βk(T ),
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hence we have equality througouth the previous inequality chain, and so p+

m − min(m, k − 1) − 1 = 1. So, βk(T ) =
⌈(

n+
∑

x∈S(T )min(|Lx| , k − 1)
)

/2
⌉

if and only if βk(T
′) =

⌈(

n′ +
∑

x∈S(T ′)min(|Lx| , k − 1)
)

/2
⌉

and 0 ≤ p +m −

min(m, k−1)−1 ≤ 1. By the inductive hypothesis on T ′, T ′ ∈ H(k) and 0 ≤ p ≤ 2.

(i) Now, if m = 0, then 1 ≤ p ≤ 2. If p = 1, then 1 = dT (u) ≥ k ≥ 2,
which is impossible. If p = 2, then either 1 = dT (u) ≥ k ≥ 2, a contradiction, or
2 = dT (u) ≥ k ≥ 2, and so k = 2 and the two descendants support vertices u1
and u2, have t1 ≤ 0 and t2 ≤ 0, respectively, a contradiction with t1, t2 ≥ 1.

(ii) If m ≥ 1, then we have to consider three situations.
If p = 0, then 1 ≤ m−min(m, k−1) ≤ 2. Hencem = k ifm−min(m, k−1) = 1

and m = k + 1 if m − min(m, k − 1) = 2. So T ′′ = C(k) or T ′′ = C(k + 1),
respectively, and T ′′ is attached to T ′ by the support vertex u. Thus T is obtained
from T ′ by using Operation H1(k) or Operation H2(k), respectively. It follows
that T ∈ H(k).

If p = 1, then 0 ≤ m−min(m, k−1) ≤ 1. Hence m = k−1 if m−min(m, k−
1) = 0 and m = k if m−min(m, k − 1) = 1. So T ′′ = C(t, k − 1) or T ′′ = C(t, k)
with 1 ≤ t ≤ k−2 and k ≥ 3, respectively, and T ′′ is attached to T ′ by the support
vertex u. Thus T is obtained from T ′ by using Operation H3(k) or Operation
H4(k), respectively. It follows that T ∈ H(k).

If p = 2, then m − min(m, k − 1) = 0, and so m ≤ k − 1. Thus either
dT ′′(u) = m + 2 ≥ k, and so k − 2 ≤ m ≤ k − 1, or dT ′′(u) = m + 1 ≥ k,
and so m = k − 1. Hence T ′′ = G1(u) with k ≥ 3 or T ′′ = G2(u) with k ≥ 4,
respectively, and T ′′ is attached to T ′ by the support vertex u. Thus T is obtained
from T ′ by using Operation H5(k) or Operation H6(k), respectively. It follows
that T ∈ H(k).

(b) n′+
∑

x∈S(T ′)min(|Lx| , k− 1) is odd. By using n′′ ≥
∑p

i=1ti+m+ p+1,

βk(T ) = βk(T
′) + n′′ − 1

≥
⌈(

n′ +
∑

x∈S(T ′)min(|Lx| , k − 1)
)

/2
⌉

+ n′′ − 1

=
(

n′ + 1 + 2n′′ − 2 +
∑

x∈S(T ′)min(|Lx| , k − 1)
)

/2

≥
(

p+m−min(m, k − 1) + n+
∑

x∈S(T )min(|Lx| , k − 1)
)

/2

≥
(

n+
∑

x∈S(T )min(|Lx| , k − 1) + 1
)

/2

≥
⌈(

n+
∑

x∈S(T )min(|Lx| , k − 1)
)

/2
⌉

= βk(T ).

So, βk(T ) =
⌈(

n+
∑

x∈S(T )min(|Lx| , k − 1)
)

/2
⌉

if and only if we have equal-

ity througouth the previous inequality chain, that is, if and only if βk(T
′) =
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⌈(

n′ +
∑

x∈S(T ′)min(|Lx| , k − 1)
)

/2
⌉

and p + m − min(m, k − 1) = 1. By the

inductive hypothesis on T ′, T ′ ∈ H(k). Also m ≥ 1, for otherwise p = 1 and we
obtain a contradiction.

(i) Now, if m ≤ k−1, then m−min(m, k−1) = 0 and p = 1. Hence m = k−1
(because dT ′′(u) = m+1 ≥ k ). So T ′′ = C(t, k− 1) with 1 ≤ t ≤ k− 2 for k ≥ 3,
attached to T ′ by the support vertex u. Thus T is obtained from T ′ by using
Operation H3(k). It follows that T ∈ H(k).

(ii) If m ≥ k, then m −min(m, k − 1) = 1 and p = 0. Hence m = k, and so
T ′′ = C(k), attached to T ′ by the support vertex u. Thus T is obtained from T ′

by using Operation H1(k). It follows that T ∈ H(k).

Subcase 1.2. v is a leaf of support vertex z in T ′, with |Lz| ≤ k − 1. Then

∑

x∈S(T )min(|Lx| , k−1) =
∑

x∈S(T ′)min(|Lx| , k−1)+min(m, k−1)+
∑p

i=1ti−1.

(a) n′ +
∑

x∈S(T ′)min(|Lx| , k − 1) is even. By n′′ ≥
∑p

i=1ti +m+ p+ 1,

βk(T ) = βk(T
′) + n′′ − 1

≥
(

n′ +
∑

x∈S(T ′)min(|Lx| , k − 1)
)

/2 + n′′ − 1

=
(

n′ + 2n′′ − 2 +
∑

x∈S(T ′)min(|Lx| , k − 1)
)

/2

≥
(

p+m−min(m, k − 1) + n+
∑

x∈S(T )min(|Lx| , k − 1)
)

/2

≥
(

n+ 1 +
∑

x∈S(T )min(|Lx| , k − 1)
)

/2

≥
⌈(

n+
∑

x∈S(T )min(|Lx| , k − 1)
)

/2
⌉

= βk(T ).

So, βk(T ) =
⌈(

n+
∑

x∈S(T )min(|Lx| , k − 1)
)

/2
⌉

if and only if we have equal-

ity througouth the previous inequality chain, that is, if and only if βk(T
′) =

⌈(

n′ +
∑

x∈S(T ′)min(|Lx| , k − 1)
)

/2
⌉

and p + m − min(m, k − 1) = 1. By the

inductive hypothesis on T ′, T ′ ∈ H(k). Also m ≥ 1, for otherwise p = 1 and we
obtain a contradiction.

(i) Now, if m ≤ k−1, then m−min(m, k−1) = 0 and p = 1. Hence m = k−1
(because dT ′′(u) = m + 1 ≥ k), and so T ′′ = C(t, k − 1) with 1 ≤ t ≤ k − 2 for
k ≥ 3, attached to T ′ by the support vertex u. Thus T is obtained from T ′ by
using Operation H7(k). It follows that T ∈ H(k).

(ii) If m ≥ k, then m −min(m, k − 1) = 1 and p = 0. Hence m = k, and so
T ′′ = C(k), attached to T ′ by the support vertex u. Thus T is obtained from T ′

by using Operation H8(k). It follows that T ∈ H(k).
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(b) n′ +
∑

x∈S(T ′)min(|Lx| , k − 1) is odd. By n′′ ≥
∑p

i=1ti +m+ p+ 1,

βk(T ) = βk(T
′) + n′′ − 1

≥
⌈(

n′ +
∑

x∈S(T ′)min(|Lx| , k − 1)
)

/2
⌉

+ n′′ − 1

=
(

n′ + 1 + 2n′′ − 2 +
∑

x∈S(T ′)min(|Lx| , k − 1)
)

/2

≥
(

p+m−min(m, k − 1) + 1 + n+
∑

x∈S(T )min(|Lx| , k − 1)
)

/2

≥
(

n+ 2 +
∑

x∈S(T )min(|Lx| , k − 1)
)

/2

>
⌈(

n+
∑

x∈S(T )min(|Lx| , k − 1)
)

/2
⌉

= βk(T ), a contradiction.

Case 2. dT (u) = k. Then let T ′ and T ′′ be the components of T − vz,
containing z and v, respectively. Then from the two conditions in the choice of
u, dT ′′(u) = k, the vertices of NT ′′(v)\{u} have degree at most k and all vertices
of V (T ′′) \ NT ′′ [v] have degree less than k. Hence v fulfills the conditions on
the vertex w in Lemma 5. Apply the inductive hypothesis to T ′ since |Y (T ′)| <
|Y (T )| . Moreover |V (T ′′)| = n′′ ≥ k + 1 and thus

βk(T ) = βk(T
′) + n′′ − 1

≥
⌈(

n′ +
∑

x∈S(T ′)min(|Lx| , k − 1)
)

/2
⌉

+ n′′ − 1.

Suppose that |Lv| = m ≥ 0, and v has u1, . . . , up as support vertices descendant
from v, with 1 ≤ ti = |Lui

| ≤ k−1 for 1 ≤ i ≤ p and k ≥ 2. Also v have q vertices
descendant from v which are different to leaves, support and to v (if m = 0).
So |S(T ′′ − {v})| = p ≥ 1, n(T ′′) = n′′ =

∑p
i=1 ti + p + q + m + 1, q ≥ 0, and

p+ q +m−min(m, k − 1)− 1 ≥ 0. We distinguish between two subcases.

Subcase 2.1. z is not a leaf, or z is a leaf of a support vertex w with |Lw| ≥ k.
Then
∑

x∈S(T )min(|Lx| , k − 1) =
∑

x∈S(T ′)min(|Lx| , k − 1) + min(m, k − 1) +
∑p

i=1ti

=
∑

x∈S(T ′)min(|Lx| , k − 1) + n′′ − p− q − 1−m

+min(m, k − 1).

(a) n′ +
∑

x∈S(T ′)min(|Lx| , k − 1) is even. Then

βk(T ) = βk(T
′) + n′′ − 1

≥
(

n′ +
∑

x∈S(T ′)min(|Lx| , k − 1)
)

/2 + n′′ − 1

=
(

p+ q +m−min(m, k − 1)− 1 + n+
∑

x∈S(T )min(|Lx| , k − 1)
)

/2

≥
(

n+
∑

x∈S(T )min(|Lx| , k − 1)
)

/2.
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Indeed, if n+
∑

x∈S(T )min(|Lx| , k − 1) is even, then
(

n+
∑

x∈S(T )min(|Lx| , k − 1)
)

/2 =
⌈(

n+
∑

x∈S(T )min(|Lx| , k − 1)
)

/2
⌉

=βk(T ),

hence we have equality througouth the previous inequality chain, and so p+ q +
m−min(m, k − 1)− 1 = 0. Also, if n+

∑

x∈S(T )min(|Lx| , k − 1) is odd, then

βk(T ) =
⌈(

n+
∑

x∈S(T )min(|Lx| , k − 1)
)

/2
⌉

≥
(

n+ 1 +
∑

x∈S(T )min(|Lx| , k − 1)
)

/2

=
⌈(

n+
∑

x∈S(T )min(|Lx| , k − 1)
)

/2
⌉

= βk(T ),

hence we have equality througouth the previous inequality chain, and so p+ q +

m − min(m, k − 1) − 1 = 1. So, βk(T ) =
⌈(

n+
∑

x∈S(T )min(|Lx| , k − 1)
)

/2
⌉

if and only if βk(T
′) =

⌈(

n′ +
∑

x∈S(T ′)min(|Lx| , k − 1)
)

/2
⌉

and 0 ≤ p + q +

m − min(m, k − 1) − 1 ≤ 1. By the inductive hypothesis on T ′, T ′ ∈ H(k) and
1 ≤ p+ q ≤ 2.

(i) Now, if m = 0, then 1 ≤ p + q ≤ 2, and so we distingish between two
situations.

If p + q = 1, then p = 1, q = 0, because p ≥ 1. So T ′′ = C(k) is attached to
T ′ by a leaf v. Thus T is obtained from T ′ by using Operation H1(k). It follows
that T ∈ H(k).

If p + q = 2, then p = 2 and q = 0 because the case p = 1 and q = 1
is impossible. Observe that either dT ′′(v) = 2 and T ′′ = F1(v) for m = 0, or
dT ′′(v) = 1 and T ′′ = F2(v) for m = 0 and k ≥ 3, respectively, and T ′′ is attached
to T ′ by a vertex v. Thus T is obtained from T ′ by using Operation H11(k), or
Operation H12(k), respectively. It follows that T ∈ H(k).

(ii) If m ≥ 1, then consider the following situations.

If p + q = 1, then p = 1, q = 0 and 0 ≤ m − min(m, k − 1) ≤ 1. For
m −min(m, k − 1) = 0, we have 1 ≤ m ≤ k − 1, and so T ′′ = C(k − 1,m) with
1 ≤ m ≤ k−1. Form−min(m, k−1) = 1, we havem = k, and so T ′′ = C(k−1, k).
Hence T ′′ = C(k−1,m) with 1 ≤ m ≤ k−1 or T ′′ = C(k−1, k), respectively, and
T ′′ is attached to T ′ by the support vertex v. Thus T is obtained from T ′ by using
Operation H9(k) or Operation H10(k), respectively. It follows that T ∈ H(k).

If p+ q = 2, then m−min(m, k− 1) = 0, so m ≤ k− 1 and p = 2 and q = 0.
Observe that either dT ′′(v) = m+2 and T ′′ = F1(v) for m > 0, or dT ′′(v) = m+1
and T ′′ = F2(v) for m > 0 and k ≥ 3, respectively, and T ′′ is attached to T ′ by
the support vertex v. Thus T is obtained from T ′ by using Operation H11(k), or
Operation H12(k), respectively. It follows that T ∈ H(k).
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(b) n′ +
∑

x∈S(T ′)min(|Lx| , k − 1) is odd. Then

βk(T ) = βk(T
′) + n′′ − 1

≥
(

n′ + 1 +
∑

x∈S(T ′)min(|Lx| , k − 1)
)

/2 + n′′ − 1

=
(

p+ q +m−min(m, k − 1) + n+
∑

x∈S(T )min(|Lx| , k − 1)
)

/2

≥
(

n+ 1 +
∑

x∈S(T )min(|Lx| , k − 1)
)

/2

≥
⌈(

n+
∑

x∈S(T )min(|Lx| , k − 1)
)

/2
⌉

= βk(T ).

So, βk(T ) =
⌈(

n+
∑

x∈S(T )min(|Lx| , k − 1)
)

/2
⌉

if and only if we have equal-

ity througouth the previous inequality chain, that is, if and only if βk(T
′) =

⌈(

n′ +
∑

x∈S(T ′)min(|Lx| , k − 1)
)

/2
⌉

and p+ q+m−min(m, k−1) = 1. By the

inductive hypothesis on T ′, T ′ ∈ H(k), p = 1, q = 0 and since m−min(m, k−1) =
0, 0 ≤ m ≤ k − 1.

(i) Now, if m = 0, then T ′′ = C(k), attached to T ′ by the leaf v. Thus T is
obtained from T ′ by using Operation H1(k). It follows that T ∈ H(k).

(ii) If 1 ≤ m ≤ k − 1, then T ′′ = C(k − 1,m) with 1 ≤ m ≤ k − 1, attached
to T ′ by the support vertex v. Thus T is obtained from T ′ by using Operation
H9(k). It follows that T ∈ H(k).

Subcase 2.2. z is a leaf of a support vertex w with |Lw| ≤ k − 1. Then

∑

x∈S(T )min(|Lx| , k−1)=
∑

x∈S(T ′)min(|Lx| , k−1) + min(m, k−1)−1 +
∑p

i=1ti

=
∑

x∈S(T ′)min(|Lx| , k−1) + n′′ − p− q − 2−m

+min(m, k−1).

(a) n′ +
∑

x∈S(T ′)min(|Lx| , k − 1) is even. Then

βk(T ) = βk(T
′) + n′′ − 1

≥
(

n′ +
∑

x∈S(T ′)min(|Lx| , k − 1)
)

/2 + n′′ − 1

=
(

p+ q +m−min(m, k − 1) + n+
∑

x∈S(T )min(|Lx| , k − 1)
)

/2

≥
(

n+ 1 +
∑

x∈S(T )min(|Lx| , k − 1)
)

/2

≥
⌈(

n+
∑

x∈S(T )min(|Lx| , k − 1)
)

/2
⌉

= βk(T ).

So, βk(T ) =
⌈(

n+
∑

x∈S(T )min(|Lx| , k − 1)
)

/2
⌉

if and only if we have equal-

ity througouth the previous inequality chain, that is, if and only if βk(T
′) =
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⌈(

n′ +
∑

x∈S(T ′)min(|Lx| , k − 1)
)

/2
⌉

and p+q+m−min(m, k−1) = 1. By the

inductive hypothesis on T ′, T ′ ∈ H(k), p = 1, q = 0 and since m−min(m, k−1) =
0, 0 ≤ m ≤ k − 1.

(i) Now, if m = 0, then T ′′ = C(k), attached to T ′ by the leaf v. Thus T is
obtained from T ′ by using Operation H8(k). It follows that T ∈ H(k).

(ii) If 1 ≤ m ≤ k − 1, then T ′′ = C(k − 1,m) with 1 ≤ m ≤ k − 1, attached
to T ′ by the support vertex v. Thus T is obtained from T ′ by using Operation
H13(k). It follows that T ∈ H(k).

(b) n′ +
∑

x∈S(T ′)min(|Lx| , k − 1) is odd. Then

βk(T ) ≥
⌈(

n′ +
∑

x∈S(T ′)min(|Lx| , k − 1)
)

/2
⌉

+ n′′ − 1

=
(

p+ q +m−min(m, k − 1) + 1 + n+
∑

x∈S(T )min(|Lx| , k − 1)
)

/2

≥
(

n+ 2 +
∑

x∈S(T )min(|Lx| , k − 1)
)

/2

>
⌈(

n+
∑

x∈S(T )min(|Lx| , k − 1)
)

/2
⌉

= βk(T ), a contradiction.

In this paper, we established a new lower bound on the k-independance number
for any graph. Then we provided a constructive characterization of trees attaining
this lower bound. It would be interesting to further investigate a characterization
of other classes of graphs (bipartite graphs) attaining this lower bound.
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