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1. INTRODUCTION

Let X1, Xo,... be independent random variables with EX; = 0 and 0 <
EXZ-2 =02 < 00,i=12,... For n € Ndenote S, = X1 + --- + X,,

i

B2 =02 +---+02. Let ®(z) be the standard normal distribution function,

1 x
O(x) = Nz / e #2dz,  x€eR.

Denote
A, =sup|P(S, < yB,) — ®(y)|.
Yy

Let G be the class of real-valued functions g(z) of x € R such that
e g(x) is even,
e ¢g(x) is non-negative for all x and g(x) > 0 for > 0;

e g(x) does not decrease for x > 0;

e the function x/g(z) does not decrease for x > 0.

In 1963 M. Katz [4] proved that, whatever g € G is, if the random variables
X1, Xo, ... are identically distributed with EX?g(X;) < oo, then there exists
a finite positive absolute constant C' such that

. EX?g(X1)
W Ans€ otg(o1v/n)

In 1965 this result was generalized by V.V. Petrov [11] to the case of not
necessarily identically distributed random variables (also see [12]): whatever
g € G is, if EX?g(X;) < 00, i = 1,...,n, then there exists a finite positive
absolute constant C' such that

C n
2 A, < ——— ) EXZ9(Xi).
® B 2 )

The present paper aims at giving an upper bound of the absolute constant
C'in (2). It will be shown that this bound does not depend on the particular
form of g € G (and, hence, is universal) and does not exceed 3.1905 in the
general case. We also give sharper bounds for some special cases.
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In particular, the function
g(x) = min{|z|, B,}, = €R,

is obviously in G. In this case inequality (2) turns into
1 IS
@) do< (g LN > B,)+ o S BN < B ).
i=1 i=1

This inequality was proved in 1966 by L.V. Osipov [7] (also see [12], Ch. V,
Section 3, Theorem 8). In [8, 9] L. Paditz showed that in (2') C' < 4.77.
In 1986 he also noted [10] that with the account of Lemma 12.2 in [1] the
techniques used in [8, 9] makes it possible to lower this estimate down to
C < 3.51. Apparently, being unaware of the result of Paditz, in 2001 Chen
and Shao published the paper [2] in which by the Tikhomirov-Stein method
inequality (2') was re-proved with C' = 4.1.

From the results of the present paper it follows that the estimates of
the constant C' in (2') can be sharpened to at least C' < 3.1905.

2.  AUXILIARY STATEMENTS

Lemma 1. Let X be a random variable with E|X|*> < co and EX = a. Let

T+ TV
27

K ~ 1.315565. ..

Then

E|X — a|* < min {KE|X|*, E|X° + 3|a|EX? + aE|X|}.

Proof. On the one hand, it is obvious that
E|X —al® =E|X —a|(X —a)? =E|X —a|(X? - 2aX +a?) <
= E|X|? — 2¢E(X|X]|) + a®E|X| + |a|EX? — 2|a]aEX + |a|]® <

= E|X[? + 3|a|EX? + 2E|X].
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On the other hand, using the result of [3] stating that the extremum of
a functional linear in the distribution function of the random variable X
under the single linear moment-type condition EX = a is attained at some
two-point distribution, in [6] (see Lemma 5 there) it was proved that

E[X —EX]? 17+ 77
sup =

= < 1.3156,
X: E[XP<oo X3 27

that completes the proof.

Lemma 2. 1°. Let ¢ > 0. Then

sup |®(gz) — &(z)] < \/217T—6<max {q, %} - 1)-

2°. Leta € R. Then

sup |[®(z + a) — ®(z)] <

The simple proof of this lemma is based on the Lagrange formula (also see
[12], Chapter 5).

Lemma 3. Let X be a random variable with EX =0 and EX2 = 1. Then

sup |[P(X < z) — ®(z)| < 0.541.
T

For the proof see, e.g., Lemma 12.2 in [1].

3. MAIN RESULT

Theorem.

1°. Let g € G, n = 1 be an integer, random variables Xq,..., X, be in-
dependent with EX; = 0 and EX2g(X;) < oo, i = 1,...,n. Then
inequality (2) holds with C < 3.1905.

2°. Let, in addition to the conditions specified in 1°, the random variables
X1,..., Xy be identically distributed. Then inequality (1) holds with
C < 3.0466.



ON THE UNIVERSAL CONSTANT IN THE KATZ-PETROV AND ...

33

3°. Let, in addition to the conditions specified in 1°, the random variables
X1,..., Xy, have symmetric distributions. Then inequality (2) holds

with C < 2.0409.

4°. Let, in addition to the conditions specified in 2°, the random variables
X1,..., Xy, have symmetric distribution. Then inequality (1) holds with

C < 1.9363.

Proof. Following the mainstream of the proof of (2) in [12],

slightly adjust it to our purposes.

1°. Consider the truncated random variables

Xj = XI(X)| < Ba), j=12...,

we will

where [(A) is the indicator function of an event A: if w is an elementary

outcome, then
1, weA,
0, w¢A.

For integer 7 > 1 and n > 1 denote

'dj :E)?j, Zn:al‘i‘"i‘ana 5]2 :D)}:ﬁ
BE=52+---+32, Fj(x)=P(X; <)

Since EX; = 0, then

3) ‘ / 2dFy () :‘ / 2dFy(@)|.

Let o € (0,1). Assume that B2 < aB2. Then with the account of (3) we

have

(1—a)Bg<Bg—§3:Zn: / 2 dF(z Z

7=121<B, j= 1|z|>Bn
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—Z/ 22 dF;( )+Zn:< / :CdFj(x)>2

|$|<Bn J=1 |z|<Bn
n
Z/ 2?dF;(z) + (/:ch ) 22/ 22 dFy(x
1=2)> B, i=1 Ye2B, 1= 2> B,
. 2
=2 7)< —— STEX2g(X
]Z;Ia:an ) g(Bn); ]g(

This means that, if B2 aB2 then

1 - 1—a
5 75 EX?9(X;) > )

From now on we will assume that
(6) B2 > aB2.
Denote Y,, = X; 4+ --- + X,,. The event {S,, < xB,} implies the event
{Y, <zBy,} U{|X1| > By} U T U{|Xn| > By}
whereas the event {Y,, < B} implies the event
{Sn < xB,} U{|X1| > B} U T U{|Xn| > B

Therefore

n< Q1+ Q2+ Qs,
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where

o, :sup‘P<Yn_gn - xBn—Zln> _(p(xBn—ﬁn)
. B, B, B

0, = sup ‘¢(%) “a@)|, Q=3 PN > B.)
n 7j=1

)

T

By virtue of the Berry-Esseen inequality with the best known upper bound
of the absolute constant [13] with the account of Lemma 1 and condition
(6) we have

_ 056 _ 5 0.56-1.3156
Z E|X; — 4, < Z ELY,

a3/2B3
TL ] 1
0.736736 ||
(7) < 03233 Z / —x g(x)dF;(x)
\z\<Bn
0. 736736 "
= a3/2B2 Z EXjg
We obviously have
Q2 < Q21 + Q22,

where

Q21 = Sl;p |@($Bn/§n) — O(z)

Q2 = Sl;}p |(I)(x - gn/én) - (I)(x)|

Furthermore, by virtue of Lemma 2 (1°) and condition (6) we obtain

2re \ B, V2meB, (B, + By)  V2mea(l + \/a)B2
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Estimating the difference B2 — E% in the numerator in the same way as we
did to establish relation (4), we appear at the inequality

2
(8) Q21 < VIrea(l 1 Ja)B Z:EX2

By virtue of Lemma 2 (2°) and conditions (6) and (3) we obtain

|[Anl

Q22 < =
V2 By,

n

1
9) \/%B Z

n

[ wir@)| = o= > [

\w\< n |$|>Bn

1 - 22g(x)
S Vzran, 22 ) Ila@) ™S

EX7g(
vV 27raB%g Z
|z[>Bn
Unifying (8) and (9) we obtain

1 2
(100 Q< 2m(1+\/5(1+\/_> Bz ZEX2

Finally, by the Markov inequality we have

(11) Q3 X Z EX2

From (7), (10) and (11) it follows that, under condition (6),
Ci(a) - 2

12 Ap < 5—F—— EX:g(X

12 Bg(Bn) ]Zl 7o)

with

0.736736 1 (1 N 2 ) O
as/? V2ra Vel +y/a)

13) Gl =
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To choose the optimal value of « and, hence, Ci(«) note that Ci(«) is a
decreasing function of a € (0,1). On the other hand, for the inequality (12)
to be reasonable irrespective of condition (6), that is, for all possible distri-
butions of X, the parameter o should be chosen so that for distributions
with Eg < aB2 estimate (12) becomes trivial. Thus, with the account of
Lemma 3 and relation (5) we arrive at the conclusion that the optimal «
and C7(«) must be tied up by the equation

2-0.5641
(14) Cila) = /———
The left-hand side of this equation is decreasing in « whereas its right-
hand side increases. Therefore, equation (14) has the unique solution o =~
0.66086 providing C1(aq) &~ 3.19045... Item 1° is thus proved.

2°. The proof of this statement is a word-for-word copy of the proof of 1°
with the only change: the coefficient 0.56 in (7) should be replaced by the
coefficient 0.4784 which is the best known upper bound of the constant in
the Berry-Esseen inequality for sums of independent identically distributed
random variables [5]. So, instead of (14), the equation

2-0.541
(15) Ca(a) = ———
should be solved with

(16) Cso(a) = O'Gf§§304 + _217@ (1 + e 2+ \/a)) +1

yielding the solution ag &~ 0.64484 and Cs () ~ 3.046506 . ..

3°. In this case the expectations of the summands equal zero. Therefore,
the coefficient 2 in (4) and, hence, in (8) as well as the coefficient 1.3156
in (7) turn into 1 whereas (22 vanishes. Therefore, the optimal value of «
should be sought as the solution to the equation

0.541
(1) Cyla) = 7.
where
0.56 1
(18) Cs(a) = + 1.

-+
a2 \amea(l + /o)
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unique solution of (17) is ag &~ 0.73491 yielding C3(ag) ~ 2.04083. ..

4°. In this case the proof repeats the proof of 3° with C3(«) replaced by

(19)
The

(20)

Ch(a) 0.4784 n 1
o) =
4 as/? V2rea(l + /a)

unique solution of the equation

+ 1.

~0.541
Cl-«

Cy(a)

is ag &~ 0.720595 providing Cy(as) ~ 1.93625... The theorem is proved.
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