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Abstract

Step nesting designs may be very useful since they require fewer
observations than the usual balanced nesting models. The number of
treatments in balanced nesting design is the product of the number of
levels in each factor. This number may be too large. As an alternative,
in step nesting designs the number of treatments is the sum of the
factor levels. Thus these models lead to a great economy and it is
easy to carry out inference. To study the algebraic structure of step
nesting designs we introduce the cartesian product of commutative
Jordan algebras.
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1. Introduction

In the step nesting designs with u factors we have u steps, (see Cox
et al., 2003). Each step corresponds to a one factor model. In the model
corresponding to jth step the first j − 1 factors have an unique level, then
there are a (j) levels for the jth factor which nest a single level of the fol-
lowing factor. If we have a (1) , . . . , a (u) “active” levels for the u factors that
nest, in balanced nesting we have

∏u
i=1 a (i) combinations of levels and in

step nesting we have
∑u

i=1 a (i) combinations.

We point out that the examples presented in Figures 1 and 2, correspond
to designs with the same number of levels in each factor. In both case we
consider the first factor with three levels, the second with four levels, the
third factor with two levels and the fourth factor with five levels. It is easy
to see that the number of treatments in a balanced nesting design is 3×4×2×
5 = 120. In step nesting designs we will have 3+4+2+5 = 14 treatments.

Figure 1. Designs with balanced nesting.

Figure 2. Designs with step nesting.
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The proposal in step nesting designs is to use a (1) levels for the first factor,
combined with a single level of all other factors; then a new single level for
the first factor, combined with a (2) new levels of the second factor, combined
with a single level of all other factors; and so on.

Let u be the number of factors with a (1) , . . . , a (u) “active” levels.
The last factor may correspond to replicates.

In the jth factor we will have c (j) = (u− j) +
∑j

k=1 a (k) levels.
For the design in the Figure 2 we have c (1) = 6, c (2) = 9, c (3) = 10 and
c (4) = 14.

To study step nesting models we will use the cartesian product of com-
mutative Jordan algebras. In the next section we present results on these
algebras and introduce that operation. Thus we consider the algebraic struc-
ture of step nesting models and show how to carry out inference.

2. Commutative Jordan algebras

Commutative Jordan algebras (CJA) are linear spaces constituted by sym-
metric matrices that commute and contain the squares of their matrices.
These structures were introduced by Jordan et al. (1934) in a reformulation
of Quantum Mechanics. Later, they were rediscovered by Seely (1970a,b,
1971, 1972, 1977); Seely & Zyskind (1971), that used these algebras in Linear
Statistical Inference, and later used by Zmyślony (1978), Drygas & Zmyślony
(1992), Vanaleuween et al. (1998, 1999) and Malley (2004). Later, see eg,
Michalski et al. (1996, 1999), they were used to construct hypothesis tests.
Seely (1970a,b) named them as Quadratic Vector Spaces, which is also done
by Rao & Rao (1998), but for priority sake we name them as Commuta-
tive Jordan Algebras. Some care must be observed here since Malley (2004)
points out that there are linear spaces constituted by matrices, closed for
the Jordan matrix product

(2.1) A▽B =
1

2
(AB+BA)

and containing the squares of their matrices that, even when their matrices
commute, are isomorphic to no CJA constituted by symmetric matrices. We
thus will consider CJA constituted by symmetric matrices.
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Any commutative Jordan algebra A has one and only one basis, the prin-
cipal basis pb (A ), constituted by pairwise orthogonal orthogonal projection
matrices, see Seely (1971).

If the sum of the matrices in pb (A ) is the identity matrix, A will be
complete.

Since the matrices in pb (A ) are idempotent and pairwise orthogonal,
any projection matrix belonging to A is idempotent, so it will be the sum of
all or part of the matrices in pb (A ). The rank of an orthogonal projection
matrix will be the sum of the ranks of those matrices in pb (A ) which add
to that matrix. Thus a orthogonal projection matrix with rank 1 will belong
to pb (A ) whenever it belong to A . With 1n the vector with n components
equal to 1 and Jn = 1n (1n)′, 1

n
Jn will be a orthogonal projection matrix

with rank 1 so that it belongs to pb (A ) whenever it belongs to A .

A commutative Jordan algebra of n×n matrices that contains 1
n
Jn will

be regular.

The commutative Jordan algebra with principal basis
{
1
r
Jr;Kr

}
, with

Kr = Ir − 1
r
Jr, is a regular complete commutative Jordan algebra with

dimension two. We have Kr = (Tr)
′
Tr with Tr the matrix obtained deleting

the first row equal to 1√
r
(1r)′ from an r × r orthogonal matrix.

If Q = pb (A ) is constituted by matrices Q1, . . . ,Qk and the row vec-
tors of Aj constitute an orthogonal basis for the range space R (Qj) of Qj,

j = 1, . . . , k, we put pb (A )
1
2 = {A1, . . . ,Ak}. We then have

(2.2)




AjA

′
j = Igj , j = 1, . . . , k

A′
jAj = Qj, j = 1, . . . , k

with gj = rank (Qj), j = 1, . . . , k. Moreover since the Q1, . . . ,Qk are pair-
wise orthogonal we will have

(2.3) AjA
′
j′ = 0gj×gj′

, j 6= j′

with 0r×s the r × s null matrix.
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Given M a regular matrix belonging to A , we have

(2.4) M =

k∑

j=1

mjQj

with Q1, . . . ,Qk the matrices in the principal basis of A . Since the Q1, . . . ,Qk

are pairwise orthogonal and idempotent we will have

(2.5) M−1 =
k∑

j=1

m−1
j Qj.

Moreover, if Qj = A′
jAj , j = 1, . . . , k, we will have

(2.6) M =

k∑

j=1

mjA
′
jAj

so the row vectors of Aj will be eigenvectors of M associated to the
eigenvalues mj with multiplicity gj = rank (Aj) = rank (Qj), j = 1, . . . , k,
and so

(2.7) det (M) =

k∏

j=1

m
gj
j .

Definition 1. Let D (B1, . . . ,Bu) be the block-wise diagonal matrix with
principal blocks B1, . . . ,Bu. Given the commutative Jordan algebras,
A1, . . . ,Au their cartesian product will be the set of the D (M1, . . . ,Mu)
with Mh ∈ Ah, h = 1, . . . , u. We will represent by ×u

h=1Ah this cartesian
product of commutative Jordan algebras.

Now we establish

Proposition 1. Let Ah be commutative Jordan algebra constituted by ah×ah
matrices with principal basis Qh = {Qh,1, . . . ,Qh,vh}, then the principal basis

of ×u
h=1Ahwill be

⋃u
h=1Qa,h with Q

a,h the family of the D (B1, . . . ,Bu) with

Bh′ = 0ah′×ah′
, if h′ 6= h, and Bh ∈ Qh, h = 1, . . . , u.
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Proof. Clearly
⋃u

h=1 Qa,h is a family of pairwise orthogonal orthogonal
projection matrices contained in ×u

h=1Ah. Moreover
⋃u

h=1Qa,h contains∑u
h=1 dh matrices with dh = dim (Ah), h = 1, . . . , u.

To complete the proof we have only to point out that whatever matrix
in ×u

h=1Ah can be written in one and only one way as a linear combination
of the matrices in

⋃u
h=1 Qa,h.

3. Step nesting designs

3.1. Model

For these designs we have the random effects model

(3.8) y =

u∑

h=0

X (h)β (h),

with, the block-wise diagonal matrices

(3.9)





X (0) = D
(
1a(1), . . . ,1a(u)

)

X (h) = D
(
Ia(1), . . . , Ia(h),1

a(h+1), . . . ,1a(u)
)
, h = 1, . . . , u− 1

X (u) = D
(
Ia(1), . . . , Ia(u)

)
,

where 1s is the vector with s components equal to 1 and Is is the s × s

identity matrix.

We assume that β (0) = 1uµ with µ the general mean value, and that
the β (h), h = 1, . . . , u, are normal, independent with null mean vectors and
variance-covariance matrices σ2 (h) Ic(h), h = 1, . . . , u, putting

(3.10) β (h) ∼ N
(
0c(h), σ2 (h) Ic(h)

)
, h = 1, . . . , u.
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Then y ∼ N (µ,V), with

(3.11)





µ = 1nµ

V =

u∑

h=1

σ2 (h)M (h)

where M (h) = X (h) [X (h)]
′

, h = 1, . . . , u. Namely we will have

(3.12)





M (0)=D
(
Ja(1), . . . ,Ja(h)

)

M (h)=D
(
Ia(1), . . . , Ia(h),Ja(h+1), . . . ,Ja(u)

)
, h=1, . . . , u− 1

M (u)=D
(
Ia(1), . . . , Ia(u)

)
.

The matrices in pb
[
×u

h=1A (a (h))
]

are

(3.13)





Q1 (h) = D (B1,1 (h) , . . . ,B1,u (h)) , h = 1, . . . , u

Q2 (h) = D (B2,1 (h) , . . . ,B2,u (h)) , h = 1, . . . , u

with

(3.14)





B1,h∗ (h) = B2,h∗ (h) = 0a(h∗)×a(h∗), h∗ 6= h, h = 1, . . . , u

B1,h (h) =
1

a (h)
Ja(h), h = 1, . . . , u

B2,h (h) = Ka(h), h = 1, . . . , u

.
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Since

(3.15)
u∑

h=1

[Q1 (h) +Q2 (h)] = In,

with n =
∑u

h=1 a (h) the commutative Jordan algebra will be complete. We
have also

(3.16)





M (0) =

u∑

k=1

a (k)Q1 (k)

M (h)=

h∑

k=1

[Q1 (k)+Q2 (k)]+

u∑

k=h+1

a (k)Q1 (k) , h=1, . . . , u−1

M (u)=

u∑

k=1

[Q1 (k) +Q2 (k)] = In

.

Thus

(3.17)

V =
u∑

h=1

σ2

[
h∑

k=1

[Q1 (k) +Q2 (k)] +
u∑

k=h+1

a (k)Q1 (k)

]

=
u∑

h=1

γ1 (h)Q1 (h) +
u∑

h=1

γ2 (h)Q2 (h) ,

where

(3.18)





γ1 (h) =

h−1∑

k=1

a (h) σ2 (k) +

u∑

k=h

σ2 (k)

γ2 (h) =

u∑

k=h

σ2 (k)

.



Algebraic structure of step nesting designs 229

Moreover, pb
[
×u

h=1A (a (h))
] 1
2 will be constituted by the

(3.19)




A1 (h) = [C1,1 (h) , . . . ,C1,u (h)] , h = 1, . . . , u

A2 (h) = [C2,1 (h) , . . . ,C2,u (h)] , h = 1, . . . , u
,

with

(3.20)





C1,h∗ (h) =
[
0a(h∗)

]′
, h 6= h∗

C2,h∗ (h) = 0[a(h)−1]×a(h∗), h 6= h∗

C1,h (h) =
1√
a (h)

[
1a(h)

]′
, h = 1, . . . , u

C2,h (h) = Ta(h), h = 1, . . . , u

.

We thus have

(3.21)





g1 (h) = rank [A1 (h)] = rank [Q1 (h)] = 1, h = 1, . . . , u

g2 (h) = rank [A2 (h)] = rank [Q2 (h)] = a (h)− 1, h = 1, . . . , u
.

3.2. Inference

Assuming that y is normal with mean vector µ and variance-covariance
matrix V, we put y ∼ N (µ,V). Thus the

(3.22) η̃l (h) = Al (h)y, l = 1, 2; h = 1, . . . , u

will be N
(
ηl (h) , γl (h) Igl(h)

)
, l = 1, 2, h = 1, . . . , u, with
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(3.23) ηl (h) = Al (h)µ, l = 1, 2; h = 1, . . . , u.

It is easy to see that η2 (h) = 0g2(h), h = 1, . . . , u, and that the cross of
covariance matrices of the η̃l (h), l = 1, 2, h = 1, . . . , u, are null so these
vectors will be independent.

We will center inference on the variance components using the fact that
the S (h) = ‖η̃2 (h)‖

2, h = 1, . . . , u are the products by γ2 (h), h = 1, . . . , u of
independent central chi-squares with g2 (h), h = 1, . . . , u, degrees of freedom.
Thus we have the unbiased estimators

(3.24) γ̃2 (h) =
S (h)

g2 (h)
, h = 1, . . . , u

from which we get

(3.25)





σ̃2 (u) = γ̃2 (u)

σ̃2 (h) = γ̃2 (h)− γ̃2 (h+ 1) , h = 1, . . . , u− 1
.

The possibility of negative estimators has been considered by many authors
(see, for example Nelder, 1954). The main inference to be had when we get
σ̃2 (h) < 0 is that σ2 (h) must be null or very small.

Moreover we have, as we saw,

(3.26) V =

u∑

h=1

2∑

l=1

γl (h)Ql (h)

so

(3.27)





V−1 =
u∑

h=1

2∑

l=1

[γl (h)]
−1

Ql (h)

det (V) =

u∏

h=1

2∏

l=1

[γl (h)]
gl(h)

.

and since that
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(3.28)

(y − µ)′ V−1 (y − µ) =

u∑

h=1

2∑

l=1

(y − µ)′ [Al (h)]
′
Al (h) (y − µ)

γl (h)

=
u∑

h=1

‖η̃1 (h)− η1 (h)‖
2

γ1 (h)
+

u∑

h=1

S (h)

γ2 (h)

the density of y will be

(3.29) n (y) =

e
−
1

2

[
u∑

h=1

‖η̃1 (h)− η1 (h)‖
2

γ1 (h)
+

u∑

h=1

S (h)

γ2 (h)

]

(2π)
n
2

u∏
h=1

2∏
l=1

[γl (h)]
gl(h)

2

.

We may now establish

Proposition 2. The η̃1 (h) and S (h), h = 1, . . . , u are sufficient and com-

plete statistics. The γ̃2 (h) and σ̃2 (h), h = 1, . . . , u, are UMVUE.

Proof. Using the factorization theorem we see that the η̃1 (h) and S (h), h =
1, . . . , u are sufficient. These statistics are complete because the
normal distribution belongs to the exponential family and, for these models,
the parameter space contains open sets (see Silvey, 1975). The last part
of the thesis is now a direct consequence of the Blackwell-Lehman-Scheffé
theorem.

For the γ2 (h), h = 1, . . . , u we get 1− q level confidence intervals:

(3.30)





[
0;

S (h)

xq,g2(h)

]

[
S (h)

x1− q

2
,g2(h)

;
S (h)

x q

2
,g2(h)

]

[
S (h)

x1−q,g2(h)
; +∞

[
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with xp,g the quantile for probability p of a central chi-square with g degrees
of freedom.

These confidence intervals may be used to derive, through duality, q level
tests for

(3.31) H0 (h) : γ2 (h) = γ2,0 (h) , h = 1, . . . , u.

The tested hypothesis is rejected when the 1 − q level confidence interval
does not contain γ2,0 (h), h = 1, . . . , u. When the first [ second ; third ]
confidence interval is used the corresponding tests will be left one-sided
[ two-sided ; right one-sided ].

The

(3.32) Z (h) =
g2 (h+ 1)

g2 (h)

S (h)

S (h+ 1)
, h = 1, . . . , u− 1

will be the product by

(3.33) υ (h) =
γ2 (h)

γ2 (h+ 1)
, h = 1, . . . , u− 1

of a variable with a central F distribution with g2 (h) and g2 (h+ 1) degrees
of freedom. With fp,g,g′ the quantile for probability p of the central F dis-
tribution with g and g′ degrees of freedom we get the 1− q confidence level
intervals:

(3.34)





[
0;

Z (h)

fq,g2(h),g2(h+1)

]

[
Z (h)

f1− q

2
,g2(h),g2(h+1)

;
Z (h)

f q

2
,g2(h),g2(h+1)

]

[
Z (h)

f1−q,g2(h),g2(h+1)
; +∞

[

for υ (h), h = 1, . . . , u− 1.
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These confidence intervals may be used to derive, through duality, q level
tests for

(3.35) H0 (h) : υ (h) = υ0 (h) , h = 1, . . . , u− 1.

The tested hypothesis is rejected when the 1 − q level confidence interval
does not contain υ0 (h), h = 1, . . . , u − 1. When the first [ second ; third
] confidence interval is used the corresponding tests will be left one-sided [
two-sided ; right one-sided ].

4. Final Comments

In balanced nesting we are forced to divide repeatedly the plots and we have
few degrees of freedom for the first levels. This decrease of plot size leads
to new shortcomings of these designs. So the step nesting designs turned
out to be a valid alternative for the balanced nested designs because we can
work with fewer observations and the amount of information for the different
factors is more evenly distributed. As in a practice experiment, the carry
cost is, many times, a decisive factor, so the step nesting design is a strong
alternative to the balanced nested design.

It is quite interesting to point out that the models with step nesting are
important because they are orthogonal but not balanced.
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