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Summary

In this paper we derive an asymptotic normality result for an adaptive trimmed

likelihood estimator of regression starting from initial high breakdownpoint robust

regression estimates. The approach leads to quickly and easily computed robust

and efficient estimates for regression. A highlight of the method is that it tends au-

tomatically in one algorithm to expose the outliers and give least squares estimates

with the outliers removed. The idea is to begin with a rapidly computed consis-

tent robust estimator such as the least median of squares (LMS) or least trimmed

squares (LTS) or for example the more recent MM estimators of Yohai. Such esti-

mators are now standard in statistics computing packages, for example as in SPLUS

or R. In addition to the asymptotics we provide data analyses supporting the new

adaptive approach. This approach appears to work well on a number of data sets

and is quicker than the related brute force adaptive regression approach described

in Clarke (2000). This current approach builds on the work of Bednarski and Clarke

(2002) which considered the asymptotics for the location estimator only.
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1. Introduction

In a relatively recent paper Bednarski and Clarke (2002) describe the asymp-
totic theory of an adaptive trimmed likelihood estimator of location, where
the adaptive estimator chooses that solution which minimizes an estimated
asymptotic variance of the trimmed likelihood estimator. This work built on
initial asymptotic work detailed in Bednarski and Clarke (1993) where the
idea of trimmed likelihood estimation was introduced, albeit at the same
time Vandev and Neykov (1993) were investigating a similar proposal at
least for the Gaussian case, and where the objective was in terms of high
breakdown point estimators. Some recent history of related proposals can
be found in Neykov and Müller (2003) and Müller and Neykov (2004).

Following up the trimmed likelihood approach for location an adaptive
version of it was successfully investigated empirically in Clarke (1994) and for
at least small to moderate sample sizes the adaptive estimator for regression
in an algorithm called ATLA proved most effective in obtaining the outliers
and only the outliers to be removed from the data before least squares is then
implemented. This work defining and using ATLA is in Clarke (2000). The
drawback of using ATLA is that in large samples the computing is inten-
sive, and while one may desire a breakdown point one half (approximately)
estimator the computing time soon becomes out of bounds. However there
are estimators in statistical packages that can be implemented on large data
sets, and for which estimates have large breakdown points. The approach
of this paper is to use these consistent and robust estimates of regression to
then use the adaptive estimate of location on the residuals to identify the
outliers and then take least squares estimates with the identified outliers
removed from the initial data. This allows one to use all the useful data in
a robust and efficient approach to estimation. What we are proposing is a
method synonymous with the approach of Rousseeuw (1984) and Rouseeuw
and Leroy (1987), where one highlights the outliers. These may be of more
interest than the actual regression in some examples. On the other hand
we do not throw out half the data as indicated in those works before eval-
uating the estimator. The more efficient estimator of Yohai (1987) known
as the MM-estimator while it leads to a high breakdown point and highly
efficient estimator, fails to identify the outliers automatically. By applying
our adaptive approach on the residuals from MM-estimator of regression
we highlight the observations that are outliers in the regression analysis.
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Following a similar idea starting from the LTS estimator Gamble (1999)
showed empirically some good results in a thesis on the analysis of contam-
inated tidal data. This paper develops some of the asymptotics associated
with such an approach.

The idea of adaptive estimation for location estimation and regression
has been studied in related but different settings to the one countenanced
in this paper in Dodge and Jurečková (1987, 1997), Jurečková, Koenker
and Welsh (1994) and more recently in a monograph Dodge and Jurečková
(2000).

2. Preliminaries

We consider the model

Y = X β + e,

where e ∼ N(0, σ2In), which is the multivariate normal distribution with
mean zero and covariance σ2In. Here In is the n × n identity matrix of
order n; X is an n × p design matrix and β is a p × 1 vector of regression
parameter coefficients. We shall assume the design matrix is of full rank p
and n > p. The Least Squares estimates of the parameter vector are given
by

β̂ = (X′X)−1X′Y

and the sum of squared residuals is given by

ê′ê = (Y −Xβ̂)′(Y − Xβ̂) = Y ′Y − β̂
′

(X′X)β̂ .

Suppose we have some robust consistent estimator β∗, for example an es-
timator such as LMS, LTS, MM, or an S-estimator, (which typically have
a breakdown point of approximately one half). For instance, breakdown
points are discussed in Rousseeuw and Leroy (1987). We set up the vector

r∗ = Y −Xβ∗

this being the vector of residuals gained from knowledge of the robust fit of
the vector parameter β∗. From r∗ we calculate the quantity

V ∗
n (g) = var(σ̃2

∗(g), g/n),

where
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(2.1) σ̃2
∗(g) =

1

n− p

h
∑

i=1

(r∗)2i:n

and h = n− g, while

var(σ2, α) =
σ2

{1− α−
√

2
πzα/2e

−z2
α/2}2

and α = g/n. Note in a departure from Clarke (2000) we use the divisor n−p
rather than h − p in equation (2.1) as then if the data have normal errors
then the estimate V ∗

n (g), keeping the proportion g/n = α fixed, is such that
when it is multiplied by (X′X)−1 tends toward the asymptotic variance of
the trimmed likelihood estimator for regression. Above zα/2 is the critical
point of the standard normal distribution, so that Φ(zα/2) = 1−α/2 where
Φ is the cumulative standard normal distribution. Also above we use the
ordered squared residuals from the vector r∗ where

(2.2) (r∗)21:n ≤ (r∗)22:n ≤ ... ≤ (r∗)2n:n.

The approach suggested in this paper is to minimize V ∗
n (g) over 0 ≤ g ≤

G∗(n), where G∗(n) = n− [n2 ]− [p+1
2 ] to determine

V ∗
n (g̃) = min0≤g≤G∗(n)V

∗
n (g).

We denote S̃n to be the set of h̃ = n− g̃ indices in r∗ that give the smallest
(r∗)2i:n. We then denote the modified adaptive trimmed likelihood estimator
of the vector parameter β as

β̃ = (X̃′X̃)−1X̃′Ỹ ,

where (X̃, Ỹ) are the original (X,Y) made up with indices in S̃n, i.e. the
least squares estimator with the “outliers” omitted.

For the initial estimators aforementioned there are consistency results in
the sense that β∗

→ β0 where convergence is in probability. For a few of the
estimators there exist under certain conditions an asymptotic normality re-
sult where

√
n(β∗

− β
o
) converges in distribution to a N(0, σ2

ψ(X
′X)−1) =

N(0, σ2
ψΛ

−1) distribution say.
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It was conjectured in Bednarski and Clarke (2002) is that if the model put
forward in the first equation in this section were to hold then α̃ = g̃/n
converges in probability to zero with large n and asymptotically the least
squares estimates β̂ and β̃ agree. The question then comes, what if the
actual density of the unobserved residuals in the first equation was in fact not
N(0, σ2In) but the individual but independent errors ei had a distribution
with a density as countenanced in that paper. That is the density is fatter
tailed than normal, and then ideally we would find that

α̃
p−→ αA

and the regression modified trimmed likelihood estimator satisfies

√
n(β̃ − β0)

d→ N(0, V (αA, F )(X′X)−1).

Here V (αA, F ) is as in the paper by Bednarski and Clarke (2002).

3. Fisher consistency and principal regularity assumptions

We begin by letting F o be the model distribution for Y and X in the regres-
sion model Y = X′β

o
+ e. Here Fo, the error distribution for e, is assumed

to have a continuous positive and symmetric density function fo which is
differentiable with bounded derivative. We let Go be the distribution of
the covariate and suppose e and X are independent random variables. For
simplicity of subsequent derivations assume that the scale of the error distri-
bution is 1 and that Go is a continuous distribution with bounded support.
Occasionally we shall use the notation F (A) to indicate the probability of
event A under the law F . Then the Fisher consistency for the trimmed
likelihood method amounts to checking if

(3.1)

∫

x(y − x′β)Jα[F
o{(u,w); fo(u−w′β) ≥ fo(y − x′β)}]dF o(y,x)

is zero for β = β
o
. Since the integral can be written as

∫

|y−x′β
o
|≤b

x(y − x′β
o
)dF o =

∫ ∫

|u|≤b
xu dFo(u)dGo(x)
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where F (|y − x′β0| ≤ b) = 1 − α by symmetry of fo we get that the last
integral is equal to zero.

Let B be a bounded set in parameter space containing βo. From now
on we shall consider infinitesimal families of distributions Gn of (Y,X),
depending on the sample size n so that the following conditions hold:

a)

lim sup
n

sup
β∈B

sup
F∈Gn

sup
y,x

√
n|F (y, x) − F o(y, x)| < ∞

and

lim sup
n

sup
β∈B

sup
F∈Gn

√
n sup

t
|F (y − x′β ≤ t)− F o(y − x′β ≤ t)| < ∞

b)
lim

δ→0,n→∞
sup
F∈Gn

sup
|t0−t1|<δ

√
n|F (t0 < |yx′β0|< t1)

−F o(t0< |y − x′β0|< t1)|=0

for β ∈ B.
Conditions a) and b) are analogous to those given in Bednarski and

Clarke (2002) (p.4). They will let us show that there exists a root-n con-
sistent sequence of estimates for the families Gn and then build a uniformly
valid expansion of the estimate for the empirical distribution functions, uni-
formly valid in α in closed subsets of (0, 1). The uniformity in α, in turn,
will let us show adaptivity of the method in the sense that the fixed α can be
substituted by adaptively chosen α without the change of estimate’s limiting
distribution.

4. Root-n consistency of the trimmed likelihood estimator

The α-trimmed likelihood functional β(F,α) is defined to solve L(F,β, b) =
0, where

L(F,β, b) =

∫

|y−x′β|≤b
x(y − x′β)dF

and F (|y − x′β| ≤ b) = 1 − α. More precisely, given β, b is defined as
inf{b : F (|y−x′β| ≤ b) ≥ 1−α} and it will further be denoted by b(F,β).
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The root n consistency means that we can find a version of the functional
β(F,α) so that

√
n(β(F,α)− βo) stays bounded uniformly in F ∈ Gn. The

following properties (1)–(3) which, as in Bednarski and Clarke (2002) imply
root n consistency of the estimator, follow from the model assumptions:

(1) supβ∈B |b(F,β) − b(F o,β)| ≤ K/
√
n for some constant K uniformly

over α in any closed subinterval of (0, 1).

(2) There is K > 0 such that for β ∈ B

|L(F,β)− L(F o,β)| ≤ K||F − F o||

uniformly over α in any closed subinterval of (0, 1).

(3) L(F o,β)− L(F o,β
o
) = (β − β

o
)A+ o(||β − β

o
||) where

A = −
∫

|y−x′β
o
|≤b(F o,β

o
)
xx′dF o + 2b(F o,β

o
)fo(b(F

o,β
o
))

∫

xx′dGo

uniformly over α in a closed subinterval of (0, 1).

Below we justify the validity of the above statements under the model
assumptions:

Proof of (1):
It follows from smoothness of F o and from a) that there are sequences
b−n , b

+
n so that

F (|y − x′β| ≤ b+n ) ≥ 1− α

F (|y − x′β| ≤ b−n ) ≤ 1− α

√
n|b+n − b−n | < M and

√
n|b+n − b(F o, β)| < M for a constant M > 0 uni-

formly in β ∈ B. We then have b−n ≤ b(F, β) ≤ b+n . In fact this convergence
holds uniformly in α ∈ [ǫ, 12 − ǫ] for any ǫ > 0.
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Proof of (2):
We have

L(F,β)− L(F o,β)

=

∫

|y−x′β|≤b(F,β)
x(y − x′β)dF −

∫

|y−x′β|≤b(Fo,β)
x(y − x′β)dF o.

If b(F o,β) ≤ b(F,β) the above difference equals

∫

|y−x′β|≤b(F,β)
x(y − x′β)d(F − F o) +

∫

|y−x′β|>b(Fo,β)

|y−x′β|≤b(F,β)

x(y − x′β)dF o.

For the first integral the integration by parts gives the bound K||F − F o||.
For the second integral it is enough to use part (1). The bounds are by our
assumption a) uniform in α.

Proof of (3):
We have

L(F o,β)− L(F o,β
o
)

=

∫

|y−x′β|≤b(F o,β)
x(y − x′β)dF o −

∫

|y−x′β
o
|≤b(F o,β

o
)
x(y − x′β

o
)dF o

= −(β − β
o
)

∫

|y−x′β
o
|≤b(F o,β

o
)
xx′dF o+

∫

|y−x′β
o
|>b(Fo,β

o
)

|y−x′β|≤b(F o,β)

x(y − x′β)dF o

= −(β − β
o
)(1 − α)

∫

xx′dGo(x)

+

(

∫ ∫ x′β
o
−b(F o,β

o
)

x′β−b(F o,β)
+

∫ ∫ x′β+b(F o,β)

x′β
o
+b(F o,β

o
)

)

x(y − x′β)dF o.
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Suppose that b(F o,β) < b(F o,β
o
). Applying the mean value theorem to

the inner integral in the first of the two remaining integrals one obtains

[x′(β
o
− β) + b(F o,β)− b(F o,β

o
)]x(ỹ − x′β)fo(ỹ)

where

ỹ ∈ [x′β − b(F o,β),x′β
o
− b(F o,β

o
)]

since the first factor tends to zero at the rate ||β − β0|| we can replace the
above expression by

−[x′(β
o
− β) + b(F o,β)− b(F o,β

o
)]

x b(F o,β
o
)fo[−b(F o,β

o
)] + o(||β − β

o
||)

where fo is the error distribution at the model.

The second inner integral gives similarly

[x′(β − β
o
) + b(F o,β)− b(F o,β

o
)]

x b(F o,β
o
)f̃o[b(F

o,β
o
)] + o(||β − β

o
||).

Their sum yields

2xx′(β − β
o
)b(F o,β

o
)f̃o[b(F

o,β
o
)] + o(||β − β

o
||),

whence we obtain

L(F o,β)− L(F o,β
o
)

=−(β−β
o
)

[

∫

|y−x′β|≤b(F o,β
o
)
xx′dGo−2

∫

xx′dGo.b(F
o,β

o
)f̃o[b(F

o,β
o
)]

]

+o(||β − β
o
||).
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In fact, the expressions given above hold uniformly in α ∈ [ǫ, 12 − ǫ].

5. Expansion - Differentiability

The aim of this section is to show that for F ∈ Gn, β = β(F,α), βo =
β(F o, α) the following expansion holds

(β − β
o
) =

∫

|y−x′β
o
|≤b(F o,β

o
)
x(y − x′β

o
)d(F − F o)A−1

+o(||F − F o||)

where A = [1− α− 2b(F o,β
o
)f̃o[b(F

o,β
o
)]]
∫

xx′dGo and the expansion is
uniform in α ∈ [ǫ, 12 − ǫ] for any ǫ > 0.

Suppose the distributions F satisfy the assumptions (a), (b) and fix
α ∈ [ǫ, 1/2 − ǫ]. Consider the difference L(F,β) − L(F o,β

o
) which is zero

and can also be written as

L(F,β)− L(F o,β) + L(F o,β)− L(F o,β
o
).

By the property (3) we can write

L(F o,β)− L(F o,β
o
) = (β − β

o
)A+ o

(

1√
n

)

.

What remains to be shown is that

L(F,β)− L(F o,β)

=

∫

|y−x′β
o
|≤b(F o,β

o
)
x(y − x′β

o
)d(F − F o) + o(||F − F o||).

This difference on the left hand side of the above equation equals
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∫

|y−x′β|≤b(F,β)
x(y − x′β)dF −

∫

|y−x′β|≤b(F o,β)
x(y − x′β)dF o

and it can be written as

(5.1)

∫

|y−x′β|≤b(F,β)
x(y − x′β)d(F − F o)

−
∫

b(F,β)<|y−x′β|≤b(F o,β)
x(y − x′β)dF o.

Notice that by integration by parts the first integral differs from

∫

|y−x′β|≤b(F,β)
x(y − x′β

o
)d(F − F o)

by term of order smaller than ||F − F o||. Moreover since the integration
region |y − x′β| ≤ b(F,β) can be written as

−x′(βo − β)− b(F, β) ≤ y − x′βo ≤ −x′(βo − β) + b(F, β)

we can deduce from assumption b) that

∫

|y−x′β|≤b(F,β)
x(y − x′β

o
)d(F − F o)

−
∫

|y−x′β
o
|≤b(F o,β

o
)
x(y − x′β

o
)d(F − F o)

is of order smaller then ||F − F o||.
We now show that the second term in the sum of integrals (6.1) is of

order o(||β − β
o
||).
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∫

b(F,β)≤|y−x′β|≤b(F o,β)
x(y − x′β)dF o

=

∫

b(F,β)<|y−x′β
o
+x′(β

o
−β)|≤b(F o,β)

x(y − x′β
o
)dF o + o(||β − β

o
||)

=

∫

b(F,β)−x′(β
o
−β)<y−x′β

o
<b(F o,β)−x′(β

o
−β)

x(y − x′β
o
)dF o

+

∫

−b(F o,β)−x′(β
o
−β)<y−x′β

o
<−b(F,β)−x′(β

o
−β)

x(y−x′β0)dF
o+o(||β−β

o
||)

=

∫ ∫

b(F,β)−x′(β
o
−β)<u≤b(F o,β)−x′(β

o
−β)

xudFodGo

+

∫ ∫

−b(F o,β)−x′(β
o
−β)<u≤−b(F,β)−x′(β

o
−β)

xudFodGo + o(||β − β
o
||).

The first of the above two integrals, after applying the mean value theorem,
gives

∫

x[b(F o,β)− b(F,β)]fo(ũ(x))b(F
o,β)dGo(x)

while the second gives

−
∫

x[b(F o,β)− b(F,β)]fo(ũ(x))b(F
o,β)dGo(x)

and so they cancel out in the limit. The expansion is uniform in α for any
closed subinterval of (0, 1) by properties 1) – 3).

6. Asymptotic normality

The limiting distribution of the estimator can be easily concluded form the
uniform expansion (compact differentiability). Since the empirical distribu-
tion function of (Y1,X1), ...., (Yn,Xn) satisfies the conditions a) and b) in
probability, under the model distribution F o, we infer that for the trimmed
likelihood estimator
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√
n(β̂ − β

o
) =

√
nA−1

∫

|y−x′β
o
|≤b(F o,β

o
)
d(Fn − F o) + op(||Fn − F ||).

Therefore
√
n(β̂

n
− β

o
) ∼ N(0, V (α,F o)),

where

V (α,F o) =

∫

A−1I
|y−x′β

o
|≤b(F o,β

o
)
x(y − x′β

o
)(y − x′β

o
)x′(A−1)′dF o

=

σ2
α

{
∫

xx′dGo

}−1

{1− α− 2b(F o,β
o
)f̃o[b(F

o,β
o
)]}2

,

while

σ2
α =

∫

|y−x′β
o
|≤b(F o,β

o
)
(y − x′β

o
)2dF o

depends on α only and it equals to

∫ uα

−uα

u2dFo(u),

where uα = F−1
o (1− α/2).

Note that this quantity depends on both α and Fo (the error distribu-
tion)

Since the expansion is uniform in α in any closed subinterval of (0, 1)
we can use α adaptively, as long as it converges to some αo in probability.
That limiting value will give the ultimate asymptotic limit.

7. Some tabulated empirical analysis

We illustrate the performance of the estimator post MM estimation, al-
though one could just as easily implement the estimator post LTS estima-
tion (where one trims approximately 50% of the data before implementing
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the adaptive estimate). For each g, the quantity V ∗
n (g) is calculated and

J(g) corresponds to those g observations that lead to the largest ordered
squared residuals post MM-estimation as indicated in (2.2). The data sets
below are well known and are described in Clarke (2000). The one data set
which continues to defy the adaptive approach in this case is the Stack Loss
Data, where the method only highlights 2 potential outliers, observations 21
and 4., whereas there are several authors who advocate 4 potential outliers,
observations 1,3,4, and 21. It is noted however that these data without the
four potential outliers do not appear to have normal errors and that the
data may need to be transformed. See Clarke (2000) and the references
therein. It can be noted that otherwise for the adaptive approach post MM-
estimation leads to exactly the outliers and only the outliers as indicated by
several other authors in the data sets below. Since the speed of this algo-
rithm is only determined essentially by the calculation of the MM-estimator
and the ordering of a set of resulting squared residuals from which certain
“variances” are calculated the present approach is considerably faster than
the computationally intensive approach of ATLA described in the earlier
paper of Clarke (2000).

Table 1. Hill data post MM linear regression as implemented by R.

g V ∗
n (g) J(g)\J(g − 1) g V ∗

n (g) J(g)\J(g − 1)

0 277.37457 - 8 101.92590 30

1 226.19626 18 9 114.99803 24

2 89.13534 7 10 133.47432 16

g̃ = 3 63.81509 33 11 154.57125 26

4 69.88278 19 12 182.44779 15

5 78.22866 6 13 214.61558 12

6 86.35742 8 14 254.08608 13

7 93.51284 14 15 300.95174 3
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Table 2. Stack Loss Data post MM linear regression as implemented by R.

g V ∗
n (g) J(g)\J(g − 1) g V ∗

n (g) J(g)\J(g − 1)

0 13.10590 - 5 14.74116 1

1 11.80638 21 6 17.79392 2

g̃ = 2 9.70778 4 7 21.08204 15

3 11.01214 3 8 23.67754 6

4 12.82279 13 9 29.72438 20

Table 3. Belgium telephone data post MMlinear regression as implemented onR.

g V ∗
n (g) J(g)\J(g − 1) g V ∗

n (g) J(g)\J(g − 1)

0 52.86791 - 6 1.64680 15

1 61.88021 20 7 0.20243 21

2 62.33533 19 g̃ = 8 0.12525 14

3 58.43027 18 9 0.14019 1

4 48.75151 17 10 0.14792 22

5 33.51871 16 11 0.15462 8

Table 4. Wood Specific Gravity post MM linear regression as implemented by R.

g V ∗
n (g) J(g)\J(g − 1) g V ∗

n (g) J(g)\J(g − 1)

0 0.01399 - g̃ = 4 0.00036 4

1 0.01849 19 5 0.00042 5

2 0.01985 6 6 0.00055 18

3 0.01447 8 7 0.00077 1
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