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Abstract

Classical extreme value methods were derived when the underlying
process is assumed to be a sequence of independent random variables.
However when observations are taken along the time and/or the space
the independence is an unrealistic assumption. A parameter that arises
in this situation, characterizing the degree of local dependence in the
extremes of a stationary series, is the extremal index, θ. In several ar-
eas such as hydrology, telecommunications, finance and environment,
for example, the dependence between successive observations is ob-
served so large values tend to occur in clusters. The extremal index
is a quantity which, in an intuitive way, allows one to characterise the
relationship between the dependence structure of the data and their
extremal behaviour. Several estimators have been studied in the lit-
erature, but they endure a problem that usually appears in semipara-
metric estimators - a strong dependence on the high level un, with
an increasing bias and a decreasing variance as the threshold decreases.
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The calibration technique (Scheffé, 1973) is here considered as a pro-
cedure of controlling the bias of an estimator. It also leads to the
construction of confidence intervals for the extremal index. A simu-
lation study was performed for a stationary sequence and two sets of
stationary data are under study for applying this technique.
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1. Introduction and motivation

Extreme Value Analysis deals with events that are more extreme than any
that have already been observed. Many studies deal with independent and
identically distributed (i.i.d.) observations but in several situations the in-
dependence between consecutive observations is an unrealistic assumption.
Extreme conditions often persist along several consecutive observations. In
fact, most environmental datasets have a complex structure: they show a
time-dependent variation and a short-term clustering, which are typical be-
haviour for extreme value data.

As an illustration of this situation let us consider two data sets:

Example 1. The data plotted in Figure 1 are the daily minimum tem-
peratures, recorded to the nearest degrees Fahrenheit at Wooster, Ohio,
during the years from 1983 to 1987. These data are freely available at
http://cdiac.ornl.gov/epubs/ndp/ushcn/newushcn.html.

Figure 1. Daily minimum Wooster temperatures from 1983 to 1987.
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From Figure 1 it is clear that:

• Large positive observations correspond to extreme cold conditions;

• There is a strong annual cycle in the data;

• An exceptionally cold winter day has quite different characteristics
from an exceptionally cold summer day;

• A tendency for extreme values to occur close to one another is also
evident.

There is evidence for a quadratic trend in the Wooster series (Coles et al,
1994). The series is approximately stationary over the winter (December
to February months) during which all the observed annual minimum tem-
peratures have occurred. We focus only on the winter months and present
results under the assumption of stationarity throughout this season and over
years, see Figure 2.

Example 2. Daily mean river levels from hydrometric station at Fraga,
during the years from 1946/47 to 1996/97. Stationarity was achieved by
considering only the data from November to February, according to what
was also used in Example 1, see Figure 2.

Figure 2. Daily minimum temperatures in December, January and February

from 1983 to 1987 (left); Daily mean levels in November, December,

January and February from 1946/47 to 1996/97 (right).
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The classical extreme value theory gives conditions for the existence of nor-
malizing sequences {an > 0} and {bn} such that, for un = anx + bn,

P{Mn ≤ un} → G(x)

as n → ∞, where G(·) is a non-degenerate distribution function that be-
longs to one of the Gumbel, Fréchet and Weibull families that are usually
termed as the extreme value distributions. The results were derived under
the hypothesis of i.i.d random variables.

But, as can be seen in Figure 1 and 2, extreme events in the real world
are often synonymous with clusters of large values. So, for a dependent
structure, the exceedances over a high level tend to occur in clusters instead
of isolated. This motivated the modification of the standard methods and
the characterization of the extremes of stationary processes, the most natural
generalization of a sequence of i.i.d random variables.

To study the extremal properties that occur in almost all series that
appeared in applications, we consider only processes with any form of short
range dependence for which, at long lags, the extremes are independent, i.e.,
processes that satisfy the D(un) condition of Leadbetter et al. (1983).

A new parameter, θ, named the extremal index, appears now. It is
roughly interpreted as the inverse of the mean of the cluster size. Now the
limiting distributions for the independent and for the stationary sequences
are not the same, unless θ = 1.

Leadbetter et al. (1983) established the following result:

– Let X1, X2, . . . , Xn be a stationary process and X∗
1 , X∗

2 , . . . , X∗
n a sequence

of independent variables with the same marginal distribution. Define

Mn = max(X1, X2, . . . , Xn) and M∗
n = max(X∗

1 , X∗
2 , . . . , X∗

n).

If the D(un) condition holds with un = anx + bn for each x

P [(M∗
n − bn)/an ≤ x] → G1(x),

as n → ∞ for normalizing sequences {an > 0} and {bn} where G1 is a
non-degenerate distribution function, if and only if

P [(Mn − bn)/an ≤ x] → G2(x)

where G2(x) = Gθ
1(x), for a constant θ such that 0 < θ ≤ 1.



Extremal behaviour of stationary processes: the ... 25

θ is the extremal index and G2 is an extreme value distribution but with
parameters different from those of G1. If (µ, σ, γ) are the parameters of G2

and (µ∗, σ∗, γ∗) are the parameters of G1, their relationship is

γ = γ∗, µ = µ∗ − σ∗ 1 − θγ

γ
, σ = σ∗θγ .

The estimation of θ is then very important not only by its own importance
but also because its influence in the other parameters.

Several estimators have appeared in literature motivated by different
probabilistic interpretations of θ. Those estimators show a strong depen-
dence on the high level un used in the exceedances definition. When the
level un decreases the variance decreases but the bias increases.

The objective of this study is to show that the calibration technique
can be used as a tool for reducing the bias of an estimator as well as for
providing confidence intervals for the parameter. This is a preliminary study;
some simulation results already obtained are encouraging, but more work is
needed.

2. Extremal index estimation

One way of interpreting the extremal index of a stationary sequence is in
terms of the tendency of the process to cluster at extreme levels. A rough
interpretation of θ is

θ = (limiting mean cluster size)−1 ,

where the limiting is in the sense of clusters of exceedances of increasingly
high thresholds.

The clusters of exceedances may be identified asymptotically as runs
of consecutive exceedances and cluster sizes as run lengths. Under regula-
rity conditions the conditional expected run length is approximately equal
to 1/θ (Nandagopalan, 1990). A suggestion was then to estimate θ by the
reciprocal of the sample average run length.

Given a sequence of r.v.’s observations, X1, X2, . . . , Xn, from a process
which satisfies the D(un) condition, where n is large and un is a high thresh-
old, the most basic form of cluster identification (that does not require any
knowledge of clustering characteristics of the process), led to a naive non-

parametric estimator of θ, the up-crossing estimator, θ̂
UC

n (un), defined as:
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Θ̂UC
n :=

n−1∑

i=1

I (Xi ≤ un < Xi+1)

n∑

i=1

I(Xi > un)

(Nandagopalan, 1990 and Gomes, 1990, 1992, 1993).
The asymptotic properties of the up-crossing estimator were establi-

shed in Nandagopalan (1990), Hsing (1993), Smith and Weissman (1994)
and Weissman and Novak (1998), under several different conditions. Nan-
dagopalan (1990) showed that, for random levels un, Θ̂UC

n (un) is a weakly
consistent estimator.

The asymptotic normality of Θ̂UC
n (un) was derived in Hsing (1993) and

Weissman and Novak (1998). The first moments of the estimator Θ̂UC
n (un),

the variance and the bias were derived in Hsing (1993).
Figure 3 shows simple path of the estimates obtained for both real data

sets (Example 1 and 2). Since un is unknown, the corresponding order
statistics is considered, un := Xk:n, where Xk:n denotes the kth descending
order statistics associated to the sample (X1, X2, . . . , Xn), X1:n ≥ X2:n ≥
. . . ≥ Xn:n.

θ̂
UC

n (k) is plotted for a range of thresholds chosen up to 20% of the
sample length, where un = Xk:n, (5 ≤ k ≤ 0.2 × n).

Figure 3. A simple path for the up-crossing estimates of the extremal index

for several values of k: Daily minimum temperatures (left) and Daily

mean river levels (right).
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A problem that arises is how to choose the level un or k for obtaining the
estimates. Intensive computational methods such as Bootstrap, Jackknife

and subsampling have been considered to help in estimating a value for the
level.

In this work the a calibration technique will be applied for obtaining
estimates and/or confidence intervals for the extremal index.

3. The calibration technique and extremal index estimation

Calibration aims at estimating the values of a variable from values of a
related variable. We have linear calibration when we assume there is a
linear relationship between both variables. We then shall have

Θ̂UC = β1 + β2θ,

where we measure the value of Θ̂UC in order to estimate the values of θ. In
the general case we would have

Θ̂UC = g(θ),

with g known. To carry calibration we obtain values of Θ̂UC , θ̂
UC

, for given
values of θ and adjust the function g.

In the case of linear calibration we are led to adjust linear regression of
Θ̂UC on θ, (see Andrews, 1970; Williams, 1969 and Scheffé, 1973).

In our case θ is the extremal index, Θ̂UC the up-crossing estimator and

we obtain values θ̂
UC

at know values of θ, e.g., θ1 = 0.1, θ2 = 0.2, . . . , θnθ
=

0.9 for each value of k (k : un := Xk:n, X1:n ≥ X2:n ≥ . . . ≥ Xn:n) to
adjust the linear regression,

(1) θ̂
UC

= β̂1(k) + β̂2(k)θ,

where β̂1(k) and β̂2(k) are the least squares estimates for the coefficients.

Besides adjusting the linear regression we can obtain the corresponding
confidence band, see Figure 4.
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Figure 4. Confidence band.

The α level confidence band is bounded by

(2) β̂1(k) + β̂2(k)θ(−1)hσ̂
(
c1 + c2

(
n−1

θ + k(θ − θ)2
)1/2

)
,

where h = 1 (lower), 2 (upper) and σ̂ is the estimate for the variance error.
Constants c1 and c2 are calculated as follows:

– Let define

S1 = n
−1/2
θ and S2 =

(
n−1

θ + kM2
)1/2

,

where

M = max
{

θ − θ(1), θ(2) − θ
}

, k = 1/

n∑

i=1

(θni
− θ)2, θ =

nθ∑

i=1

θni
/nθ,

where θ(1) and θ(2) are the minimum and the maximum of θi, respectively.
After c has been obtained by entering Tables (see Scheffé, 1973) with

s1 = S1/zα and s2 = S2/zα, where zα is the upper α/2-point of the standard
normal distribution, c1 and c2 are given by

c1 = czαν1/2
(
χ

χ2
ν

1−δ

)−1/2
, c2 = c

(
p χ

Fp,ν

δ

)1/2
,

with p = 2, where χ
Fp,ν

δ is the upper δ-point of the F -distribution with p

and ν df and χ
χ2

ν

1−δ is the lower δ-point of the chi-square distribution with ν
df.

Figure 5 represents a graphical explanation of the calibration procedure
for obtaining confidence bands.

We can now invert the equation (1)
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(3)
θ =

(
θ̂

UC
− β̂1(k)

)
/β̂2(k)

= a(k) θ̂
UC

+ b(k)

and the limits (2) are obtained as

(4) θUP = θ + C−1
(
β̂2(k)D1 + σ̂c2

(
n−1

θ C + kD2
1

)1/2
)

,

(5) θLOW = θ + C−1
(
β̂2(k)D2 − σ̂c2

(
n−1

θ C + kD2
2

)1/2
)

,

with

(6)

C = β̂2

2
− (σ̂c2)

2k,

D1 = D1(θ̂
UC

) = θ̂
UC

− β̂1(k) − β̂2(k)θ + σ̂c1,

D2 = D2(θ̂
UC

) = θ̂
UC

− β̂1(k) − β̂2(k)θ − σ̂c1.

Expressions above give the bands of θ for the α level, once θ̂
UC

is obtained.

Figure 5. Schematic diagram of calibration chart (u ≡ θ̂
UC

and v ≡ θ).
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To use equations (3), (4) and (5) we need the endpoints of the three cali-
bration intervals:

– For v = 1, 2, θ̂
UC(v)

= β1 + β2θ
(v);

– θ̂
UC(I1)

(θ̂
UC(I2)

) is found by putting θ = θ(1) (θ(2)) in (2) with h = 2(1);

– θ̂
UC(01)

(θ̂
UC(02)

) was found by putting θ=θ(1) (θ(2)) in (2) with h=1(2).

Once θ̂
UC

is obtained:

– For θ̂
UC(1)

≤ θ̂
UC

≤ θ̂
UC(2)

; the point estimate of θ is given by putting

θ̂
UC

in (3);

– For θ̂
UC(01)

≤ θ̂
UC

≤ θ̂
UC(I2)

(θ̂
UC(I1)

≤ θ̂
UC

≤ θ̂
UC(02)

), the up-
per (lower) endpoint of the interval estimate for θ is given by putting

θ̂
UC

in (4) and (5).

4. Simulation study

In Prata Gomes (2008) several stationary processes were considered and the
extremal index was obtained. For those models a simulation study applying
the calibration procedure for estimating θ was carried out.

Here we are going to present the moving-maximum process, Deheuvels
(1983), of order q, in short denoted by MMM(q), defined by

Xt = max
0≤i≤q

Zt−i, t > q,

where Zi are independent standard Fréchet random variables.

The extremal index exists and is θ = 1/(1 + q).

For several values of q, and obviously θ, a sample of size n = 1000 is
obtained from that model. A set of k (number of upper order statistics)

values for which the simple path of θ̂
UC

shows some stability was chosen.

For nθ pairs (θ, θ̂
UC

) the calibration technique was applied and the
results (only for 3 values of k) are shown in Table 1.
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Table 1. Real values and confidence intervals (CI) for θ.

MMM(q)

θ CI for k = 103 CI for k = 104 CI for k = 105

0.1 0 0.158898 0 0.15864 0 0.157282

0.1111 0 0.170274 0 0.17 0 0.168642

0.125 0 0.184648 0 0.184352 0 0.182989

0.1429 0.100246 0.203397 0.100651 0.203071 0.101763 0.201694

0.1667 0.127416 0.228792 0.127762 0.22842 0.128815 0.227012

0.2 0.164797 0.265251 0.165067 0.264806 0.166048 0.263331

0.25 0.219072 0.321707 0.219245 0.321139 0.220158 0.319536

0.3333 0.304702 0.418379 0.30476 0.417593 0.305688 0.415743

0.5 0.468591 1 0.468491 1 0.469676 1

Given a data set and once fitted a model for which there exists
the extremal index, the construction of a table based on the model, gives
the possibility of obtaining an estimate of θ as well as obtaining a confidence
interval.

5. Conclusions

As it was said this is a preliminary study on using calibration technique as an
auxiliary tool for correcting an estimator from bias. We are now developing
a computational procedure in that can:

• fit a stationary model, for which the extremal index does exist, to a
given data set;

• consider the inclusion of other estimators;

• consider possible non-linear calibration models.
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