TOTAL OUTER-CONNECTED DOMINATION IN TREES

JOANNA CYMAN

Department of Technical Physics and Applied Mathematics
Gdańsk University of Technology
Narutowicza 11/12, 80–952 Gdańsk, Poland

e-mail: joana@mif.pg.gda.pl

Abstract

Let $G = (V, E)$ be a graph. Set $D \subseteq V(G)$ is a total outer-connected dominating set of G if D is a total dominating set in G and $G[V(G) - D]$ is connected. The total outer-connected domination number of G, denoted by $\gamma_{tc}(G)$, is the smallest cardinality of a total outer-connected dominating set of G. We show that if T is a tree of order n, then $\gamma_{tc}(T) \geq \lceil \frac{2n}{3} \rceil$. Moreover, we constructively characterize the family of extremal trees T of order n achieving this lower bound.

Keywords: total outer-connected domination number, domination number.

2010 Mathematics Subject Classification: 05C05, 05C69.

1. Introduction

Graph theory terminology not presented here can be found in [1, 5].

Let $G = (V, E)$ be a simple graph. The *neighbourhood* of a vertex v, denoted by $N_G(v)$, is the set of all vertices adjacent to v in G and the integer $d_G(v) = |N_G(v)|$ is the *degree* of v in G. A vertex of degree one is called an *end-vertex*. A *support* is the unique neighbour of an end-vertex.

Let P_n denotes the path of order n. For a vertex v of G, we shall use the expression, *attach a P_n at $v*$, to refer to the operation of taking the union of G and a path P_n and joining one of the end-vertices of this path to v with an edge.

Set $D \subseteq V(G)$ is a *dominating set* in G if $N_G(v) \cap D \neq \emptyset$ for every vertex $v \in V(G) - D$. The *domination number* of G, denoted $\gamma(G)$, is the cardinality of a minimum dominating set of G.

Set $D \subseteq V(G)$ is a total dominating set of G if each vertex of $V(G)$ has a neighbour in D. The cardinality of a minimum total dominating set in G is the total domination number of G and is denoted by $\gamma_t(G)$. Total domination in graphs is currently well studied in graph theory (for examples, see [2, 6]).

Set $D \subseteq V(G)$ is said to be a total outer-connected dominating set of G if D is a total dominating set and $G[V(G) - D]$ is connected. The cardinality of a minimum total outer-connected dominating set in G is called the total outer-connected domination number of G and is denoted by $\gamma_{tc}(G)$. Observe that every graph G without isolates has a total outer-connected dominating set, since the set of all vertices of G is a total outer-connected dominating set in G.

We will show that if T is a tree of order n, then $\gamma_{tc}(T) \geq \left\lceil \frac{2n}{3} \right\rceil$. Moreover, we will constructively characterize the extremal trees T of order $n \geq 3$ achieving this lower bound.

Similar bounds for various domination numbers in trees are given in [2, 6].

2. The Lower Bound

Theorem 1. If T is a tree of order $n \geq 2$, then

$$\gamma_{tc}(T) \geq \left\lceil \frac{2n}{3} \right\rceil.$$

Proof. The result is obvious for $n = 2$. Assume that $n \geq 3$ and let D be a minimum total outer-connected dominating set of T. Let us denote by S any component of $T[D]$. Since T is a tree, no two vertices of $V(T) - D$ have a common neighbour in S. Hence $|N_T(S) \cap (V(T) - D)| \leq 1$. Moreover, D is dominating in T and isolate free, and thus

$$n(T) = |V(T) - D| + |D| \geq |V(T) - D| + 2|V(T) - D| \geq n - \gamma_{tc}(T) + 2n - 2\gamma_{tc}(T).$$

Finally, we have $\gamma_{tc}(T) \geq \frac{2}{3}n$, and so $\gamma_{tc}(T) \geq \left\lceil \frac{2n}{3} \right\rceil$.

\hfill \blacksquare
3. The Characterization of the Extremal Trees

For \(n \geq 2 \), let \(T_n = \{ T \mid T \) is a tree of order \(n \) such that \(\gamma_{tc}(T) = \lceil \frac{2n}{3} \rceil \}, T = \bigcup_{n \geq 2} T_n \). We will present a constructive characterization of the family \(T \). For this purpose, we define a type (1) operation on a tree \(T \) as attaching \(P_3 \) at \(v \) where \(v \) is a vertex of \(T \) not belonging to some minimum total outer-connected dominating set of \(T \), and a type (2) operation as attaching \(P_1 \) at \(v \) where \(v \) belongs to some minimum total outer-connected dominating set of \(T \).

We now define families of trees as follows. Let \(C_n = \{ T \mid T \) is a tree of order \(n \) which can be obtained from the path \(P_3 \) by a finite sequence of operations of type (1) and (2), where the operation of type (2) appears in the sequence exactly \(n \) (mod 3) times, \(n \geq 3 \), and \(C_2 = \{ P_2 \} \).

We shall establish:

Theorem 2. For \(n \geq 2 \), \(T_n = C_n \).

We prove Theorem 2 by establishing eight lemmas.

Lemma 3. If \(D \) is a minimum total outer-connected dominating set of a tree \(T \) of order at least 6 and \(T \not\subseteq T \) and \(\Omega(T) \), then every end-vertex of \(T \) and every support of \(T \) belongs to \(D \).

Lemma 4. If \(T \not\subseteq T \), then \(|\Omega(T)| \leq |S(T)| + 2 \), where \(\Omega(T) \) is the set of all end-vertices of \(T \) and \(S(T) \) is the set of all supports of \(T \).

Proof. Let \(D \) be a minimum total outer-connected dominating set of a tree \(T \) belonging to \(T \). Then for some positive integer \(n \) we have \(T \in T_n \) and \(|D| = \lceil \frac{2n}{3} \rceil \). Suppose \(|\Omega(T)| = |S(T)| + t \), \(t > 2 \). Denote by \(s_1, \ldots, s_m \) the supports of \(T \) and by \(l_1, \ldots, l_m, l_{m+1}, \ldots, l_{m+t} \) the end-vertices of \(T \), where \(l_i \in N_T(s_i), 1 \leq i \leq m \). Notice that \(D - \{ l_{m+1}, l_{m+2}, l_{m+3} \} \) is a total outer-connected dominating set of a tree \(T' = T - \{ l_{m+1}, l_{m+2}, l_{m+3} \} \). Hence \(\gamma_{tc}(T') \leq |D| - 3 = \lceil \frac{2n-9}{3} \rceil \). On the other hand, by Theorem 1, we have \(\gamma_{tc}(T') \geq \lceil \frac{2(n-3)}{3} \rceil \) and consequently \(\lceil \frac{2(n-3)}{3} \rceil \leq \gamma_{tc}(T') \leq \lceil \frac{2n-9}{3} \rceil \), which is impossible.

Thus we have what follows.

Corollary 1. If \(T \in T \), then exactly one of the following conditions holds:
(i) every support of T is a neighbour of exactly one end-vertex;
(ii) exactly one support of T is a neighbour of exactly two end-vertices, while every other support is a neighbour of exactly one end-vertex;
(iii) exactly one support of T is a neighbour of three end-vertices, while every other support is a neighbour of exactly one end-vertex or exactly two supports of T are the neighbours of exactly two end-vertices, while every other support is a neighbour of exactly one end-vertex.

Lemma 5. If $T \in \mathcal{T}_n$, $n \geq 3$, and T' is obtained from T by a type (1) operation, then $T' \in \mathcal{T}_{n+3}$.

Proof. By definition of a type (1) operation on a tree T, there exists a minimum total outer-connected dominating set of T such that adding a new end-vertex of T' and a new support of T' to it produces a total outer-connected dominating set of T'. Hence, since $T \in \mathcal{T}_n$, $\gamma_{tc}(T') \leq \gamma_{tc}(T) + 2 = \left\lceil \frac{2n+6}{3} \right\rceil$. However, T' is a tree of order $n + 3$, and so, by Theorem 1, $\gamma_{tc}(T') \geq \left\lceil \frac{2(n+3)}{3} \right\rceil$. Consequently, $\gamma_{tc}(T') = \left\lceil \frac{2(n+3)}{3} \right\rceil$, and hence $T' \in \mathcal{T}_{n+3}$.

Notice that $C_3 = \{P_3\} = T_3$. Hence an immediate consequence of Lemma 5 now follows.

Lemma 6. If $n \geq 3$ and $n \equiv 0 \pmod{3}$, then $C_n \subseteq \mathcal{T}_n$.

We will now prove the inverse inclusion.

Lemma 7. If $n \geq 3$ and $n \equiv 0 \pmod{3}$, then $\mathcal{T}_n \subseteq C_n$.

Proof. We proceed by induction on $n \geq 3$. Since $T_3 = \{P_3\} = C_3$, the result is true for $n = 3$. Let $n \geq 6$ satisfy $n \equiv 0 \pmod{3}$ and assume that $\mathcal{T}_k \subseteq C_k$ for all integers $k \equiv 0 \pmod{3}$, where $3 \leq k < n$. Let $T \in \mathcal{T}_n$. We show that $T \in C_n$. Let D be a minimum total outer-connected dominating set of T. Let $P = (v_1, v_2, \ldots, v_m)$ be a longest path in T. By Lemma 3, \(\{v_1, v_2, v_{m-1}, v_m\} \subseteq D\).

We will show that $d_T(v_2) \equiv 2$ and $\{v_3, v_4\} \cap D = \emptyset$. Suppose that v_2 is adjacent to two end-vertices, say v_1 and l_1. Then $D' = D - \{l_1\}$ is a total outer-connected dominating set of $T' = T - l_1$. Hence, since $T \in \mathcal{T}_n$, $\gamma_{tc}(T') \leq \left\lceil \frac{2n}{3} \right\rceil - 1 = \frac{2n}{3} - 1$. However, T' is a tree of order $n - 1 \equiv 2 \pmod{3}$, and so, by Theorem 1, $\gamma_{tc}(T') \geq \left\lceil \frac{2(n-1)}{3} \right\rceil = \frac{2n}{3}$, a contradiction.
Suppose now $v_3 \in D$. Then the set $D' = D - \{v_1\}$ is a total outer-connected dominating set of $T' = T - v_1$ and $\frac{2n}{3} \leq \gamma_{tc}(T') \leq \frac{2n}{3} - 1$ — a contradiction. Hence $d_T(v_2) = 2$ and $v_3 \notin D$. From Lemma 3 and from the fact that $V(T) - D$ is a tree we conclude that $m \geq 6$ and $v_4 \notin D$.

We will now prove that $d_T(v_3) = 2$. Since $v_3 \notin D$, v_3 is not a support. Suppose there exists a path $P' = (u_1, u_2, v_3)$ in T such that $u_2 \notin \{v_2, v_4\}$. By Lemma 4, $\{u_1, u_2\} \subseteq D$. Moreover $D' = D - \{u_1, u_2\}$ is a total outer-connected dominating set of $T' = T - \{u_1, u_2\}$. Hence $\gamma_{tc}(T') \leq \gamma_{tc}(T) - 2 = \frac{2n}{3} - 2$, which contradicts the fact that (by Theorem 1) $\gamma_{tc}(T') \geq \left[\frac{2(n-2)}{3}\right]$.

Let us consider tree $T' = T - \{v_1, v_2, v_3\}$. The set $D' = D - \{v_1, v_2\}$ is a total outer-connected dominating set of T'. Hence $\gamma_{tc}(T') \leq \left[\frac{2n}{3}\right] - 2 = \left[\frac{2n-6}{3}\right]$. Moreover by Theorem 1, $\gamma_{tc}(T') \geq \left[\frac{2(n-3)}{3}\right]$ and so $T' \in T_{n-3}$. Thus, by the inductive hypothesis, $T' \in C_{n-3}$. Since v_4 does not belong to some minimum total outer-connected dominating set of T', namely D', T is constructed from T' by a type (1) operation. Hence $T \in C_n$.

Lemma 8. If $T \in T_n$, $n \geq 3$, and $n \not\equiv 2 \pmod{3}$, then a tree T' obtained from T by a type (2) operation belongs to T_{n+1}.

Proof. By definition of a type (2) operation on a tree T, there exists a minimum total outer-connected dominating set of T such that adding to it the new end-vertex of T' produces a total outer-connected dominating set of T'. Hence, since $T \in T_n$ and $n \not\equiv 2 \pmod{3}$, $\gamma_{tc}(T') \leq \gamma_{tc}(T) + 1 = \left[\frac{2n+2}{3}\right] = \left[\frac{2n+2}{3}\right]$. However, T' is a tree of order $n + 1$, and so, by Theorem 1, $\gamma_{tc}(T') \geq \left[\frac{2(n+1)}{3}\right]$. Consequently, $\gamma_{tc}(T') = \left[\frac{2n+2}{3}\right]$ and $T' \in T_{n+1}$.

Lemma 9. If $n \geq 4$ and $n \not\equiv 0 \pmod{3}$, then $C_n \subseteq T_n$.

Proof. We proceed by induction on $n \geq 4$. The base case is true since $C_4 = \{K_{1,3}, P_3\} \subseteq T_4$ and $C_5 = \{K_{1,4}, P_5, T_1\} \subseteq T_5$, where T_1 is a tree obtained from a star $K_{1,3}$ by subdivision of exactly one of its edges.

Assume now that the result is true for $k \not\equiv 0 \pmod{3}$, $4 \leq k < n$. Let T be a tree belonging to the family C_n. Thus T can be obtained from a tree T' by either one operation of type (1) or one operation of type (2). If T is constructed from T' as a result of operation of type (1), then T' is a tree of order $n - 3$ and by our induction hypothesis $T' \in T_{n-3}$. Therefore, by Lemma 5, $T \in T_n$.

If T is obtained from T' by one operation of type (2), then T' is a tree of order $n - 1$. We consider two cases:
Case 1. If \(n = 1 \) \((\text{mod} \; 3)\), then the construction of \(T' \) is accomplished by using only type \((1)\) operations starting with the path \(P_3 \) and thus \(T' \in C_{n-1} \). From Lemma 6 we conclude that \(T' \in T_{n-1} \). Hence, by Lemma 8, \(T \in T_n \).

Case 2. If \(n \equiv 2 \) \((\text{mod} \; 3)\), then \(T' \in C_{n-1} \) and by our induction hypothesis \(T' \in T_{n-1} \). Finally, by Lemma 8, \(T \in T_n \).

Lemma 10. If \(n \geq 4 \) and \(n \not\equiv 0 \) \((\text{mod} \; 3)\), then \(T_n \subseteq C_n \).

Proof. We proceed by induction on \(n \geq 4 \). Since \(P_4 = \{P_4, K_{1,3}\} = C_4 \) and \(P_5 = \{K_{1,4}, P_3, T_1\} = C_5 \), where \(T_1 \) is a tree obtained from a star \(K_{1,3} \) by subdivision of exactly one of its edges, the result is true for \(n = 4 \) and \(n = 5 \).

Let \(n \geq 7 \) satisfy \(n \not\equiv 0 \) \((\text{mod} \; 3)\), and assume that \(T_k \subseteq C_k \) for all integers \(k \not\equiv 0 \) \((\text{mod} \; 3)\), where \(4 \leq k < n \). Let \(T \in T_n \) and let \(D \) be a minimum total outer-connected dominating set of \(T \). Let \(P = (v_1, v_2, \ldots, v_m) \) be the longest path in \(T \). By Lemma 3, \(\{v_1, v_2, v_{m-1}, v_m\} \subseteq D \). We consider two cases:

Case 1. One of the vertices \(v_2 \) or \(v_{m-1} \) is adjacent to at least two endvertices. Without loss of generality, we can assume that \(|N_T(v_2) \cap \Omega(T)| \geq 2 \). Let \(l_1 \in N_T(v_2) \cap \Omega(T) \), \(l_1 \neq v_1 \). In this case \(D' = D - \{l_1\} \) is a total outer-connected dominating set of \(T' = T - l_1 \) and hence \(\gamma_{tc}(T') \leq \gamma_{tc}(T) - 1 = \left\lceil \frac{2n-3}{3} \right\rceil = \left\lceil \frac{2n-2}{3} \right\rceil \). Thus, Theorem 1 implies \(\gamma_{tc}(T') = \left\lceil \frac{2n-2}{3} \right\rceil \). Depending on whether \(n \equiv 1 \) \((\text{mod} \; 3)\) or \(n \equiv 2 \) \((\text{mod} \; 3)\) we have \(T' \in C_{n-1} \) from Lemma 7 or by our induction hypothesis, respectively. Hence we obtain \(T \in C_n \).

Case 2. The vertices \(v_2 \) and \(v_{m-1} \) have degree 2. Suppose that \(v_3 \) or \(v_{m-2} \), say \(v_3 \), belongs to \(D \). Then for tree \(T' = T - v_1 \) and for \(D' = D - \{v_1\} \), similarly to Case 1, we have that \(T \in C_n \). Hence we can assume that \(\{v_3, v_{m-2}\} \cap D = \emptyset \). Thus from connectivity of \(V(T) - D \) we have \(\{v_4, v_{m-3}\} \cap D = \emptyset \).

We will now show that \(v_3 \) or \(v_{m-2} \) is of degree two. Suppose to the contrary, that neither \(v_3 \) nor \(v_{m-2} \) is of degree 2. Let \(y \) be the neighbour of \(v_3, y \neq v_2 \) and \(y \neq v_4 \), and let \(z \) be the neighbour of \(v_{m-2}, z \neq v_{m-1} \) and \(z \neq v_{m-3} \). Then neither \(y \) nor \(z \) is not an end-vertex – otherwise we would have \(v_3 \in D \) or \(v_{m-2} \in D \). From that and from our choice of path \((v_1, v_2, \ldots, v_m) \) it is straightforward that \(y \) and \(z \) are supports and \(A = N_T(y) - \{v_3\} \subseteq \Omega(T) \), \(B = N_T(z) - \{v_{m-2}\} \subseteq \Omega(T) \). We also have that \(D - (A \cup B \cup \{y, z\}) \) is a total outer-connected dominating set of \(T' = T - (A \cup B \cup \{y, z\}) \), and so \(\left\lceil \frac{2(n-2)|A|-|B|}{3} \right\rceil \leq \gamma_{tc}(T') \leq \gamma_{tc}(T) - 2 - |A| - |B| \leq \left\lceil \frac{2n}{3} \right\rceil - 2 - |A|-|B| \), which
is impossible. Therefore, without the loss of generality, we may assume that $\deg_T(v_3) = 2$.

Let us consider $T' = T - \{v_1, v_2, v_3\}$. The set $D' = D - \{v_1, v_2\}$ is a total outer-connected dominating set of T', and hence $\gamma_{tc}(T') \leq \lceil \frac{2n}{3} \rceil - 2 = \lceil \frac{2n-6}{3} \rceil$. Moreover, by Theorem 1, $\gamma_{tc}(T') \geq \lceil \frac{2(n-3)}{3} \rceil$ and so $T' \in \mathcal{T}_{n-3}$. Therefore, by the inductive hypothesis, $T' \in \mathcal{C}_{n-3}$. However, T is constructed from T' by a type (1) operation. Hence $T \in \mathcal{C}_n$.

Theorem 2 now follows immediately from Lemmas 6, 7, 9 and 10.

References

Received 18 March 2009
Revised 27 July 2009
Accepted 17 August 2009