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Université de Jijel, Algérie

e-mail: azzam
−
d@yahoo.com

Abstract
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1. Introduction, notation and preliminaries

Let (E, ‖ · ‖) be a separable Banach space with a topological dual E ′.
B(0, ρ) is the closed ball of E of center 0 and radius ρ > 0. By L1

E([0, 1])
we denote the space of all Lebesgue-Bochner integrable E-valued functions
defined on [0, 1]. Let CE([0, 1]) be the space of all continuous mappings
u : [0, 1] → E, endowed with the sup norm.

Recall that a mapping v : [0, 1] → E is said to be scalarly derivable
when there exists some mapping v̇ : [0, 1] → E (called the weak derivative
of v) such that, for every x′ ∈ E′, the scalar function 〈x′, v(·)〉 is derivable
and its derivative is equal to 〈x′, v̇(·)〉. The weak derivative v̈ of v̇ when it
exists is the weak second derivative.

By W
2,1
E ([0, 1]) we denote the space of all continuous mappings u ∈

CE([0, 1]) such that their first usual derivatives u̇ are continuous and scalarly
derivable and such that ü ∈ L1

E([0, 1]).
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For closed subsets A and B of E, the Hausdorff distance H(A,B) between
A and B is defined by

H(A,B) = max
[

sup
a∈A

d(a,B), sup
b∈B

d(b, A)
]

,

where
d(a,B) = inf

b∈B
‖a − b‖.

Let r > 0 and θ be a given number in [0, 1[. The aim of our paper is to pro-
vide existence of solutions for the second order delay-differential inclusion:

(Pr)















ü(t) ∈ F (t, u(t), u(h(t)), u̇(t)), a.e. t ∈ [0, 1]

u(t) = ϕ(t), ∀t ∈ [−r, 0]

u(0) = 0; u(θ) = u(1).

We consider F : [0, 1]×E ×E ×E ⇒ E, h : [0, 1] → [−r, 1], t− r ≤ h(t) ≤ t,
and ϕ : [−r, 0] → E. The given mappings h and ϕ are continuous and F is
a convex compact valued multifunction Lebesgue-measurable on [0, 1] and
upper semi-contiuous on E × E × E.

A solution u of (Pr) is a mapping u : [−r, 1] → E satisfying ü(t) ∈
F (t, u(t), u(h(t)), u̇(t)) for almost every t ∈ [0, 1], u(t) = ϕ(t), for all t ∈
[−r, 0] and u(0) = 0; u(θ) = u(1), with u ∈ X := CE([−r, 1]) ∩ W

2,1
E ([0, 1])

equipped with the norm

‖u‖X = max
{

sup
t∈[−r,1]

‖u(t)‖, sup
t∈[0,1]

‖u̇(t)‖
}

.

In the second order evolution inclusions some related results are given in
[1, 12, 15, 16, 17] and [18].

The existence of solutions for the second order delay differential prob-
lems have been discussed in the literature. For example, the problem de-
scribed by the delay differential equation

ü(t) = f(t, u(t), u(h(t)), u̇(t)), t ∈ [0, T ]

with the boundary conditions

u(t) = ϕ(t), ∀t ∈ [−r, 0];

u(T ) = B
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has been studied in [10] (see also the references therein). Another type of
delay differential inclusions of the form

u̇(t) ∈ H(t, τ(t)u), a.e. t ∈ [0, 1]

with the boundary conditions

u(t) = ϕ(t), ∀t ∈ [−r, 0];

u(0) = u0,

where, for any t ∈ [0, 1], τ(t) : CE([−r, t]) → CE([−r, 0]) is defined by
(τ(t)u)(s) = u(t + s) for all s ∈ [−r, 0], H : [0, 1] × CE([0, 1]) ⇒ R

n, has
been studied among others in [6, 7, 8] and [13].

In this paper, we apply the multivalued analogue of Shaefer continu-
ous principle to prove the existence of solutions to our problem (Pr). In
particular, if F is uniformly Lipschitz in the sense

(∗)
H(F (t, x1, y1, z1), F (t, x2, y2, z2))

≤ k1‖x1 − x2‖ + k2‖y1 − y2‖ + k3‖z1 − z2‖

where k1, k2, k3 are positive constants satisfying k1 + k2 + k3 < 1, then
we show that the solution set of (Pr) is a retract of X := CE([−r, 1]) ∩
W

2,1
E ([0, 1]).

2. Existence result

In the sequel, we need the following results from [1]. See also [14] for the
two point boundary value problems for second order differential equations.

Lemma 2.1. Let E be a separable Banach space and let G : [0, 1]×[0, 1] → R

be the function defined by the formula

(1) G(t, s) =











−s if 0 ≤ s ≤ t,

−t if t < s ≤ θ,

t(s − 1)/(1 − θ) if θ < s ≤ 1;

for 0 ≤ t < θ and by

(2) G(t, s) =











−s if 0 ≤ s < θ,

(θ(s − t) + s(t − 1))/(1 − θ) if θ ≤ s ≤ t,

t(s − 1)/(1 − θ) if t < s ≤ 1;

for θ ≤ t ≤ 1.
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Then the following assertions hold.

1) If u ∈ W
2,1
E ([0, 1]) with u(0) = 0 and u(θ) = u(1), then

(3) u(t) =

∫ 1

0
G(t, s)ü(s)ds,∀t ∈ [0, 1].

2) G(·, s) is derivable on [0, 1], for every s ∈ [0, 1], its derivative is given by

the formula

(4)
∂G

∂t
(t, s) =











0 if 0 ≤ s ≤ t,

−1 if t < s ≤ θ,

(s − 1)/(1 − θ) if θ < s ≤ 1;

for 0 ≤ t < θ and by

(5)
∂G

∂t
(t, s) =











0 if 0 ≤ s < θ,

(s − θ)/(1 − θ) if θ ≤ s ≤ t,

(s − 1)/(1 − θ) if t < s ≤ 1;

for θ ≤ t ≤ 1.

3) G(·, ·) and
∂G

∂t
(·, ·) satisfies

(6) sup
t,s∈[0,1]

|G(t, s)| ≤ 1, sup
t,s∈[0,1]

∣

∣

∣

∂G

∂t
(t, s)

∣

∣

∣
≤ 1.

4) For f ∈ L1
E([0, 1]) and for the mapping uf : [0, 1] → E defined by

(7) uf (t) =

∫ 1

0
G(t, s)f(s)ds,∀t ∈ [0, 1],

one has uf (0) = 0 and uf (θ) = uf (1).

Further, the mapping uf is derivable, and its derivative u̇f satisfies

(8) lim
h→0

uf (t + h) − uf (t)

h
= u̇f (t) =

∫ 1

0

∂G

∂t
(t, s)f(s)ds

for all t ∈ [0, 1]. Consequently, u̇f is a continuous mapping from [0, 1]
into E.
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5) The mapping u̇f is scalarly derivable, that is, there exists a mapping

üf : [0, 1] → E such that, for every x′ ∈ E′, the scalar function 〈x′, u̇f (·)〉 is

derivable with d
dt
〈x′, u̇f (t)〉 = 〈x′, üf (t)〉; further

(9) üf = f a.e. on [0, 1].

Proposition 2.1. Let E be a separable Banach space and let f : [0, 1] → E
be a continuous mapping (respectively a mapping in L1

E([0, 1])). Then the

mapping

uf (t) =

∫ 1

0
G(t, s)f(s)ds,∀t ∈ [0, 1]

is the unique C2
E([0, 1])-solution (respectively W

2,1
E ([0, 1])-solution) to the

differential equation

{

ü(t) = f(t) ∀t ∈ [0, 1];

u(0) = 0; u(θ) = u(1).

We also need the following fixed point theorem which is the multivalued
analogue of the Shaefer continuation principle. For more details for the
fixed point theory we refer the reader to [11].

Theorem 2.1. Let Y be a normed linear space and A : Y → 2Y an upper

semicontinuous compact multivalued operator with compact convex values.

Suppose that there exists an R > 0 such that the a priori estimate

x ∈ λAx (0 < λ ≤ 1) ⇒ ‖x‖ ≤ R

holds. Then A has a fixed point in the ball B(0, R).

Now, we are ready to prove our main existence theorem.

Theorem 2.2. Let E be a separable Banach space, F : [0, 1]×E×E×E ⇒ E
be a convex compact valued multifunction, Lebesgue-measurable on [0, 1] and

upper semicontinuous on E×E×E. We assume that F (t, x, y, z) ⊂ Γ(t) for

all (t, x, y, z) ∈ [0, 1] × E × E × E, for some convex norm-compact valued,

and measurable multifunction Γ : [0, 1] ⇒ E which is integrably bounded,

that is, there exists a function k ∈ L1
R
([0, 1]) such that ‖v‖ ≤ |k(t)| a.e.

t ∈ [0, 1] for all v ∈ Γ(t). Let h : [0, 1] → [−r, t] be a continuous mapping

and ϕ ∈ CE([−r, 0]) with ϕ(0) = 0. Then the boundary value problem (Pr)
has at least one solution in X := CE([−r, 1]) ∩W

2,1
E ([0, 1]).
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Proof. We transform the problem (Pr) into a fixed point inclusion in the
Banach space X. By Lemma 2.1 and Proposition 2.2, the existence solution
of (Pr) is equivalent to the problem of finding u ∈ X such that

(10)











u(t) ∈

∫ 1

0
G(t, s)F (t, u(s), u(h(s)), u̇(s))ds, ∀t ∈ [0, 1]

u(t) = ϕ(t), ∀t ∈ [−r, 0].

Define the operator A on X by

(11)

Au = {v ∈ X/ v = ϕ on [−r, 0] and

v(t) =

∫ 1

0
G(t, s)f(s)ds, ∀t ∈ [0, 1], f ∈ S1

F (u)}

where

(12)
S1

F (u) =

=
{

ϑ ∈ L1
E([0, 1])/ ϑ(t) ∈ F (t, u(t), u(h(t)), u̇(t)), a.e. t ∈ [0, 1]

}

.

Then, the integral inclusion (10) is equivalent to the operator inclusion

(13) u(t) ∈ Au(t), ∀ t ∈ [−r, 1].

It is clear that A has its values in X, using Lemma 2.1 and the assumption
ϕ(0) = 0.

Step 1. First, let us recall that the set S1
Γ of all measurable selections of Γ

is included in L1
E([0, 1]) and it is convex and compact for the weak topology

σ(L1
E([0, 1]),L∞

E′ ([0, 1])). Furthermore, the set-valued integral

∫ 1

0
Γ(t)dt =

{
∫ 1

0
f(t)dt, f ∈ S1

Γ

}

is convex and norm-compact. (See [4, 5, 9] for a more general result). On
the other hand, let us observe that, for any Lebesgue measurable mappings
u,w : [0, 1] → E, v : [−r, 1] → E, there is a Lebesgue-measurable selec-
tion s ∈ S1

Γ such that s(t) ∈ F (t, u(t), v(h(t)), w(t)) a.e. Indeed, there
exist sequences (un), (vn) and (wn) of simple E-valued mappings which
converge pointwise to u, v and w respectively, for E endowed with the
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norm topology. Notice that the multifunctions F (., un(.), vn(h(.)), wn(.))
are Lebesgue-measurable. In view of the existence theorem of measurable
selection (see [9]), for each n, there is a Lebesgue-measurable selection sn of
F (., un(.), vn(h(.)), wn(.)). As sn(t) ∈ F (t, un(t), vn(h(t)), wn(t)) ⊂ Γ(t), for
all t ∈ [0, 1] and as S1

Γ is weakly compact in L1
E([0, 1]), by Eberlein-Smǔlian

theorem, we may extract from (sn) a subsequence (s′n) which converges
σ(L1

E([0, 1]),L∞
E′ ([0, 1])) to a mapping s ∈ S1

Γ. An application of the Banach-
Mazur’s trick to (s′n) provides a sequence (zn) with zn ∈ co{sk : k ≥ n}
such that (zn) converges pointwise almost everywhere to s. Using this
fact and the pointwise convergence of the sequences (un), (vn) and (wn)
and the upper semicontinuity of F (t, ., ., .) it is not difficult to see that
s(t) ∈ F (t, u(t), v(h(t)), w(t)) a.e. Consequently, S1

F (u) 6= ∅ for all u ∈ X.
This shows that A is well defined.

Step 2. In this step we will show that the multivalued operator A satisfies
all the conditions of Theorem 2.1. Clearly, Au is convex for each u ∈ X.
First, we show that A has compact values on X. For each u ∈ X, let (vn)
be a sequence in Au, then by (11), for every n there exists fn ∈ S1

F (u) ⊂ S1
Γ

such that

vn(t) =

∫ 1

0
G(t, s)fn(s)ds, ∀t ∈ [0, 1]

and vn(t) = ϕt) for all t ∈ [−r, 0]. Since S1
Γ is weakly compact in L1

E([0, 1]),
we may extract from (fn) a subsequence (that we do not relabel) converging
σ(L1

E ,L∞
E′) to a mapping f ∈ S1

Γ. Since F (t, ., ., .) is upper semicontinuous
and has convex compact values, we get f(t) ∈ F (t, u(t), u(h(t)), u̇(t)) for
almost every t ∈ [0, 1]. In particular, for every x′ ∈ E′ and for every t ∈ [0, 1],
we have

(14)

lim
n→∞

〈x′,

∫ 1

0
G(t, s)fn(s)ds〉 = lim

n→∞

∫ 1

0
〈G(t, s)x′, fn(s)〉ds

=

∫ 1

0
〈G(t, s)x′, f(s)〉ds

= 〈x′,

∫ 1

0
G(t, s)f(s)ds〉.

As the set-valued integral
∫ 1
0 G(t, s)Γ(s)ds (t ∈ [0, 1]) is norm compact, (14)

shows that the sequence (vn(.)) = (
∫ 1
0 G(·, s)fn(s)ds) converges pointwise
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to v(.) =
∫ 1
0 G(., s)f(s)ds, for E endowed with the strong topology. At this

point, it is worth mentioning that the sequence (v̇n(.)) = (
∫ 1
0

∂G
∂t

(., s)fn(s)ds)
converges pointwise to v̇(.), for E endowed with the strong topology, using
as above the weak convergence of (fn) and the norm compactness of the set-
valued integral

∫ 1
0

∂G
∂t

(t, s)Γ(s)ds. Hence (vn) converges in X to a mapping
w where

w(t) =

∫ 1

0
G(t, s)f(s)ds, ∀t ∈ [0, 1]

and w(t) = ϕ(t) for all t ∈ [−r, 0]. This says that Au is compact in X.

Next, we show that A is a compact operator, that is, A maps bounded
sets into relatively compact sets in X. Let S be a bounded set in X and let
u ∈ S, for each v ∈ Au there exists f ∈ S1

F (u) such that

v(t) =

∫ 1

0
G(t, s)f(s)ds, ∀t ∈ [0, 1]

and v(t) = ϕ(t) for all t ∈ [−r, 0]. Observe that for all t, t′ ∈ [0, 1]

‖v(t) − v(t′)‖ ≤

∫ 1

0
|G(t, s) − G(t′, s)| ‖f(s)‖ds

≤

∫ 1

0
|G(t, s) − G(t′, s)| |k(s)|ds,

and

‖v̇(t) − v̇(t′)‖ ≤

∫ 1

0

∣

∣

∣

∣

∂G

∂t
(t, s) −

∂G

∂t
(t′, s)

∣

∣

∣

∣

|k(s)|ds.

The function G is continuous on the compact set [0, 1] × [0, 1], so it is uni-
formly continuous there. In addition, k ∈ L1

R
([0, 1]), then, the right-hand

side of the above inequalities tends to 0 as t → t′. We conclude that A(S)
and {v̇ : v ∈ A(S)} are equicontinuous in CE([0, 1]). Since ϕ ∈ CE([−r, 0])
we get the equicontinuity of A(S) in X. Further, for each t ∈ [−r, 1] and
each τ ∈ [0, 1], the sets A(S)(t) = {v(t)/ v ∈ A(S)} and {v̇(τ)/ v ∈ A(S)}
are relatively compact in E because they are included in the norm compact
sets

∫ 1
0 G(t, s)Γ(s)ds and

∫ 1
0

∂G
∂t

(t, s)Γ(s)ds, respectively. An application of
the Arzelà-Ascoli theorem implies that A(S) is relatively compact in X and
hence A is compact.
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Next, we prove that the graph of A, gph(A) = {(u, v) ∈ X × X/ v ∈ Au}
is closed. Let (un, vn) be a sequence of gph(A) converging uniformly to
(u, v) ∈ X × X with respect to ‖ · ‖X. Since vn ∈ Aun, for each n there
exists fn ∈ S1

F (un) ⊂ S1
Γ such that

vn(t) =

∫ 1

0
G(t, s)fn(s)ds, ∀t ∈ [0, 1]

and vn(t) = ϕ(t) for all t ∈ [−r, 0]. As S1
Γ is weakly compact in L1

E([0, 1]), we
may extract from (fn) a subsequence (that we do note relabel) converging
σ(L1

E ,L∞
E′) to a mapping f ∈ S1

Γ.

Observe that fn(t) ∈ F (t, un(t), un(h(t)), u̇n(t)). Since ‖un − u‖X → 0
and F (t, ., ., .) is upper semicontinuous on E × E × E with convex com-
pact values we conclude that f(t) ∈ F (t, u(t), u(h(t)), u̇(t)), using a closure
type theorem ( see [9]). Equivalently, f ∈ S1

F (u). On the other hand,
repeating the arguments given above, it is not difficult to see that the se-
quence (vn(.)) = (

∫ 1
0 G(., s)fn(s)ds) converges pointwise to

∫ 1
0 G(., s)f(s)ds

and that the sequence (v̇n(.)) = (
∫ 1
0

∂G
∂t

(., s)fn(s)ds) converges pointwise to
∫ 1
0

∂G
∂t

(., s)f(s)ds, for E endowed with the strong topology. As (vn) con-
verges to v in (X, ‖ · ‖X) we get

v(t) =

∫ 1

0
G(t, s)f(s)ds, ∀t ∈ [0, 1]

and v(t) = ϕ(t) for all t ∈ [−r, 0]. This shows that A has a closed graph and
hence it is an upper semicontinuous operator on X. Finally, we show that
there exists an R > 0 such that the a priori estimate

u ∈ λAu (0 < λ ≤ 1) ⇒ ‖u‖ ≤ R

holds. We have

u ∈ λAu ⇔ there exists f ∈ S1
F (u) ⊂ S1

Γ

such that










u(t) = λ

∫ 1

0
G(t, s)f(s)ds, ∀t ∈ [0, 1]

u(t) = λϕ(t), ∀t ∈ [−r, 0].
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For each t ∈ [0, 1], using relation (6) and the assumption over Γ, we have

‖u(t)‖ ≤

∫ 1

0
|G(t, s)| ‖f(s)‖ds,

≤

∫ 1

0
|k(s)|ds = ‖k‖

L1

R
([0,1])

and

‖u̇(t)‖ ≤

∫ 1

0

∣

∣

∣

∣

∂G

∂t
(t, s)

∣

∣

∣

∣

‖f(s)‖ds ≤ ‖k‖
L1

R
([0,1]).

On the other hand, for each t ∈ [−r, 0] we have

‖u(t)‖ = ‖λϕ(t)‖ ≤ ‖ϕ‖CE([−r,0]).

Taking the above inequalities into account, we obtain

‖u‖X ≤ max
(

‖k‖
L1

R
([0,1]), ‖ϕ‖CE ([−r,0])

)

= R.

Hence by the conclusion of Theorem 2.1, A has a fixed point in the ball
B(0, R), what, in turn, means that this point is a solution in X to our
boundary value problem (Pr).

To end the paper, we prove below that under suitable Lipschitz assumption
on the second member, the solution set of (Pr) is a retract of X. Compare
with Theorem 1 in [2], and Theorem 5 in [12] in which the authors deal with
nonconvex differential inclusions and Theorem 2 in [2] in the convex case.
See also [3].

Theorem 2.3. Under the hypotheses of Theorem 2.2, if we replace the upper

semicontinuity assumption on F (t, ·, ·, ·) by the condition

(∗)
H(F (t, x1, y1, z1), F (t, x2, y2, z2))

≤ k1‖x1 − x2‖ + k2‖y1 − y2‖ + k3‖z1 − z2‖

for all (t, x1, y1, z1), (t, x2, y2, z2) ∈ [0, 1] × E × E × E, where k1, k2, k3 are

positive constants satisfying k1 + k2 + k3 < 1. Then the solution set of the

problem (Pr) is a retract of X.
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Proof. The idea of proof comes from ([2], Theorem 2). Let us denote
by X (ϕ) the solution set of (Pr). By virtue of the proof of Theorem 2.2,
u ∈ X (ϕ) iff u ∈ Au. Let us prove that A is a contraction. Let u1, u2 ∈
X and v1 ∈ Au1, then v1 = ϕ on [−r, 0] and there exists f1 ∈ SF (u1)
such that v1(t) =

∫ 1
0 G(t, s)f1(s)ds, for all t ∈ [0, 1]. We have f1(t) ∈

F (t, u1(t), u1(h(t)), u̇1(t)), as F is compact valued and F (·, u2(·), u2(h(·)),
u̇2(·)) is measurable, the multifunction H defined from [0, 1] into E by

H(t) =
{

w ∈ F (t, u2(t), u2(h(t)), u̇2(t)) :

‖f1(t) − w‖ = d(f1(t), F (t, u2(t), u2(h(t)), u̇2(t)) a.e
}

is also measurable with nonempty closed values. In view of the existence
theorem of measurable selections (See [9]), there is a measurable mapping
f2 : [0, 1] → E such that f2(t) ∈ H(t) for all t ∈ [0, 1]. This yields f2(t) ∈
F (t, u2(t), u2(h(t)), u̇2(t)) and

(15) ‖f1(t) − f2(t)‖ = d(f1(t), F (t, u2(t), u2(h(t)), u̇2(t))) a.e on [0, 1].

Let us define the mapping v2 on [−r, 1] by

v2(t) =











ϕ(t), ∀t ∈ [−r, 0]
∫ 1

0
G(t, s)f2(s)ds, ∀t ∈ [0, 1].

Clearly, v2 ∈ Au2. For every t ∈ [0, 1] we have

‖v1(t) − v2(t)‖ =

∥

∥

∥

∥

∫ 1

0
G(t, s)(f1(s) − f2(s))ds

∥

∥

∥

∥

≤

∫ 1

0
‖f1(s) − f2(s)‖ds.

From this, (15) and the assumption (∗), for every t ∈ [0, 1] we obtain

‖v1(t) − v2(t)‖

≤

∫ 1

0
‖f1(s) − f2(s)‖ds

=

∫ 1

0
d(f1(s), F (s, u2(s), u2(h(s)), u̇2(s)))ds
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≤

∫ 1

0
H(F (s, u1(s), u1(h(s)), u̇1(s)), F (s, u2(s), u2(h(s)), u̇2(s)))ds

≤

∫ 1

0
(k1‖u1(s) − u2(s)‖ + k2‖u1(h(s)) − u2(h(s))‖ + k3‖u̇1(s) − u̇2(s)‖)ds

≤

∫ 1

0
(k1‖u1 − u2‖X + k2‖u1 − u2‖X + k3‖u1 − u2‖X)ds

= (k1 + k2 + k3)‖u1 − u2‖X.

Consequently,

(16) ‖v1 − v2‖CE([−r,1]) = ‖v1 − v2‖CE([0,1]) ≤ (k1 + k2 + k3)‖u1 − u2‖X.

On the other hand, using Lemma 2.1, we have

‖v̇1(t) − v̇2(t)‖ =

∥

∥

∥

∥

∫ 1

0

∂G

∂t
(t, s)(f1(s) − f2(s))ds

∥

∥

∥

∥

≤

∫ 1

0
‖f1(s) − f2(s)‖ds.

By repeating the same arguments, we obtain

(17) ‖v̇1 − v̇2‖CE([0,1]) ≤ (k1 + k2 + k3)‖u1 − u2‖X.

The inequalities (16) and (17) give

‖v1 − v2‖X ≤ (k1 + k2 + k3)‖u1 − u2‖X.

Then we get

d(v1,Au2) = inf
v2∈Au2

‖v1 − v2‖X ≤ (k1 + k2 + k3)‖u1 − u2‖X,

and

sup
v1∈Au1

d(v1,Au2) ≤ (k1 + k2 + k3)‖u1 − u2‖X.
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By similar computations and by interchanging the role of u1 and u2, we have

sup
v2∈Au2

d(v2,Au1) ≤ (k1 + k2 + k3)‖u1 − u2‖X.

Hence we obtain

H(Au1,Au2) ≤ (k1 + k2 + k3)‖u1 − u2‖X

with (k1 + k2 + k3) < 1, proving that A is a contraction in X. By a result
of Ricceri [19], the set

Fix(A) = {u ∈ X : u ∈ Au}

is a retract of X. It is clear that Fix(A) = X (ϕ). This shows that the
solution set of (Pr) is a retract of X and the proof of the theorem is complete.
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