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Abstract

In this paper, some fixed point principle is applied to prove the
existence of solutions for delay second order differential inclusions with
three-point boundary conditions in the context of a separable Banach
space. A topological property of the solutions set is also established.
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1. INTRODUCTION, NOTATION AND PRELIMINARIES

Let (E,|| - ||) be a separable Banach space with a topological dual E’.
B(0, p) is the closed ball of E of center 0 and radius p > 0. By L([0,1])
we denote the space of all Lebesgue-Bochner integrable F-valued functions
defined on [0,1]. Let Cg([0,1]) be the space of all continuous mappings
u : [0,1] — E, endowed with the sup norm.

Recall that a mapping v : [0,1] — E is said to be scalarly derivable
when there exists some mapping v : [0,1] — E (called the weak derivative
of v) such that, for every 2’ € E’, the scalar function (x’,v(-)) is derivable
and its derivative is equal to (z/,0(-)). The weak derivative ¥ of v when it
exists is the weak second derivative.

By W%’l([O, 1]) we denote the space of all continuous mappings u €
Cg([0,1]) such that their first usual derivatives u are continuous and scalarly
derivable and such that i € LL([0,1]).
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For closed subsets A and B of E, the Hausdorff distance H(A, B) between
A and B is defined by

H(A, B) = max | supd(a, B), sup d(b, A)],
acA beB

where

d(a, B) = jof [la — b].

Let > 0 and 6 be a given number in [0, 1[. The aim of our paper is to pro-
vide existence of solutions for the second order delay-differential inclusion:

ii(t) € F(t,u(t), u(h(t)), a(t)), ae.te [0,1]
(PT) u(t) - 90<t>7 vt e [—7‘, 0]

We consider F': [0,1]x ExEXxE = E, h:[0,1] = [-r, 1], t—r < h(t) <,
and ¢ : [-r,0] — E. The given mappings h and ¢ are continuous and F' is
a convex compact valued multifunction Lebesgue-measurable on [0,1] and
upper semi-contiuous on £ X F X E.

A solution u of (P,) is a mapping u : [—r,1] — E satisfying u(t) €
F(t,u(t), u(h(t)), u(t)) for almost every t € [0,1], u(t) = ¢(t), for all t €
[—7,0] and u(0) = 0; u(d) = u(1), with u € X := Cg([-r,1]) " W2'([0,1])
equipped with the norm

Jullx = max { sup [ut)], sup [jat)]}.
te[—r1] t€[0,1]

In the second order evolution inclusions some related results are given in
[1, 12, 15, 16, 17] and [18].

The existence of solutions for the second order delay differential prob-
lems have been discussed in the literature. For example, the problem de-
scribed by the delay differential equation

i(t) = F(t u(t),u(h(), i(t), te[0,]

with the boundary conditions
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has been studied in [10] (see also the references therein). Another type of
delay differential inclusions of the form
u(t) € H(t,7(t)u), a.e. te€[0,1]

with the boundary conditions

u(t) = (p(t)a vt € [_Tv 0]7

u(0) = uy,
where, for any ¢ € [0,1], 7(¢t) : Cg([-r,t]) — Cg([-r,0]) is defined by
(t(t)u)(s) = u(t +s) for all s € [—r,0], H : [0,1] x Cg([0,1]) = R", has
been studied among others in [6, 7, 8] and [13].

In this paper, we apply the multivalued analogue of Shaefer continu-

ous principle to prove the existence of solutions to our problem (P,). In
particular, if F' is uniformly Lipschitz in the sense

H(F(t,z1,y1,21), F(t, 22,12, 22))

< Eillzy — zof| + kallyr — vl + k3|21 — 22|

(%)

where ki, ks, k3 are positive constants satisfying ki + ko + k3 < 1, then
we show that the solution set of (P,) is a retract of X := Cg([-r,1]) N
W ([0,1]):

2. EXISTENCE RESULT

In the sequel, we need the following results from [1]. See also [14] for the
two point boundary value problems for second order differential equations.

Lemma 2.1. Let E be a separable Banach space and let G : [0,1]x[0,1] — R
be the function defined by the formula

-5 if 0<s<t,
(1) G(t,s) = —t if t<s<4,

ts—1)/(1—-0) if 0<s<1;
for 0 <t <6 and by

—s if 0<s<4,
(2) G(t,s)=<¢ (O(s—t)+s(t—1)/(1—0) if 0<s<t,
t(s—1)/(1—-0) if t<s<l;

for 0 <t<1.
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Then the following assertions hold.
1) If ue W%l([O, 1]) with w(0) = 0 and u(0) = u(1), then

1
(3) u(t) = /0 Gt 5)ii(s)ds, vt € [0,1].

2) G(-,s) is derivable on [0,1], for every s € [0,1], its derivative is given by
the formula
if 0<s<t,
oG .
(4) E(t,s): -1 if t<s<0,
(s—=1)/1-0) if 0<s<1,

for 0 <t <6 and by

o 0 if 0<s<0,

(5) E(t’s): (s—=0)/(1—0) if 6<s<t,
s—=1)/(1-0) if t<s<l;

for 0 <t<1.
3) G(-,-) and %(,) satisfies

ot
(6) swp (G <1 swp |29 <1

t,5€[0,1] tselo1] | Ot

4) For f e LL([0,1]) and for the mapping uys : [0,1] — E defined by

1
(7) up(t) = /0 G(t,s)f(s)ds,Vt € [0,1],

one has up(0) =0 and ug(0) = us(1).
Further, the mapping uy is derivable, and its derivative iy satisfies

up(t+h) —ugs(t) Laa

(®) lim . = is(t)= [ G (s)ds

for all t € [0,1]. Consequently, iy is a continuous mapping from [0,1]
into B.
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5) The mapping 1y is scalarly derivable, that is, there exists a mapping
tif : [0,1] — E such that, for every x’ € E', the scalar function (', iz(-)) is
derivable with % (2’ is(t)) = (2',iif(t)); further

9) iy = f a.e. onl0,1].

Proposition 2.1. Let E be a separable Banach space and let f : [0,1] — E
be a continuous mapping (respectively a mapping in LL([0,1])). Then the

mapping .
wp(t) = / G(t, 5) f(s)ds, ¥t € [0,1]
0

is the unique C%([0,1])-solution (respectively W%’l([O, 1])-solution) to the
differential equation

{a@) — £(t) Ve [0,1];
u(0) = 0; u(f) = u(1).

We also need the following fixed point theorem which is the multivalued
analogue of the Shaefer continuation principle. For more details for the
fixed point theory we refer the reader to [11].

Theorem 2.1. Let Y be a normed linear space and A :Y — 2¥ an upper
semicontinuous compact multivalued operator with compact conver values.
Suppose that there exists an R > 0 such that the a priori estimate

reXMzr 0<A<1)=|z||<R
holds. Then A has a fived point in the ball B(0, R).
Now, we are ready to prove our main existence theorem.

Theorem 2.2. Let E be a separable Banach space, F': [0,1]x EXEXE =2 E
be a convex compact valued multifunction, Lebesque-measurable on [0, 1] and
upper semicontinuous on Ex Ex E. We assume that F(t,z,y,z) C I'(t) for
all (t,x,y,z) € [0,1] x E x E x E, for some convexr norm-compact valued,
and measurable multifunction T' : [0,1] = E which is integrably bounded,
that is, there exists a function k € L%([0,1]) such that |jv]| < |k(t)| a.e.
t € [0,1] for all v € T(t). Let h : [0,1] — [—7r,t] be a continuous mapping
and ¢ € Cg([—7,0]) with ¢(0) = 0. Then the boundary value problem (P;)
has at least one solution in X := Cg([—r,1]) N W%l([o, 1]).
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Proof. We transform the problem (P,) into a fixed point inclusion in the
Banach space X. By Lemma 2.1 and Proposition 2.2, the existence solution
of (P,) is equivalent to the problem of finding v € X such that

1
ut)e/o G(t, )P (£, u(s), u(h(s)), i(s))ds, vt € [0,1]
u(t) =

(10) (
( o(t), Vte[-r0].

Define the operator A on X by

Au={veX/v=¢ on|[-r0 and

(11) 1
v(t) :/0 G(t,s)f(s)ds, ¥t € [0,1], f € Sg(u)}

where
Sk(u) =

(12)
= {9 € LL([0,1))/ 9(t) € F(t,u(t), u(h(t)),i(t)), ae. te[0,1]}.

Then, the integral inclusion (10) is equivalent to the operator inclusion
(13) u(t) € Au(t), Vte [-r1].

It is clear that A has its values in X, using Lemma 2.1 and the assumption
¢(0) =0.

Step 1. First, let us recall that the set S% of all measurable selections of I’
is included in L([0,1]) and it is convex and compact for the weak topology
o(LL([0,1]),L55([0,1])). Furthermore, the set-valued integral

/Olr(t)dt = {/01 ftyat, fe S%}

is convex and norm-compact. (See [4, 5, 9] for a more general result). On
the other hand, let us observe that, for any Lebesgue measurable mappings
u,w : [0,1] — E, v : [-r,1] — E, there is a Lebesgue-measurable selec-
tion s € Sk such that s(t) € F(t,u(t),v(h(t)),w(t)) a.e. Indeed, there
exist sequences (uy,), (v,) and (w,) of simple E-valued mappings which
converge pointwise to u, v and w respectively, for E endowed with the
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norm topology. Notice that the multifunctions F'(.,uy(.), vn(h(.)), wn(.))
are Lebesgue-measurable. In view of the existence theorem of measurable
selection (see [9]), for each n, there is a Lebesgue-measurable selection s,, of
F(,un(.),vn(h(.),wn(.)). As sn(t) € F(t,un(t), vn(h(t)), wy(t)) C I'(t), for
all t € [0,1] and as S} is weakly compact in LL([0,1]), by Eberlein-Smdilian
theorem, we may extract from (s,) a subsequence (s!,) which converges
o(LL([0,1]),L55 ([0, 1])) to a mapping s € St. An application of the Banach-
Mazur’s trick to (s],) provides a sequence (z,) with z, € co{sy : k > n}
such that (z,) converges pointwise almost everywhere to s. Using this
fact and the pointwise convergence of the sequences (u,), (v,) and (wy,)
and the upper semicontinuity of F(t,.,.,.) it is not difficult to see that
s(t) € F(t,u(t),v(h(t)),w(t)) a.e. Consequently, SL(u) # 0 for all u € X.
This shows that A is well defined.

Step 2. In this step we will show that the multivalued operator A satisfies
all the conditions of Theorem 2.1. Clearly, Au is convex for each u € X.
First, we show that A has compact values on X. For each u € X, let (v,)
be a sequence in Au, then by (11), for every n there exists f, € Sk(u) C Sk
such that

1
v (t) :/0 G(t, s)fn(s)ds, Vte€[0,1]

and vy, (t) = ¢t) for all ¢ € [—r,0]. Since Sl is weakly compact in LL([0,1]),
we may extract from (f,) a subsequence (that we do not relabel) converging
J(LlE,L%O/) to a mapping f € S%. Since F(t,.,.,.) is upper semicontinuous
and has convex compact values, we get f(t) € F(t,u(t),u(h(t)),u(t)) for
almost every ¢ € [0, 1]. In particular, for every 2’ € E’ and for every t € [0, 1],
we have

1

1
lim <x’,/0 G(t,s)fn(s)ds) = lim (G(t,8)2, fu(s))ds

n—oo n—oo 0

1
(14) _ / (Gt 9)', F(s))ds

0
1
= <x',/0 G(t,s)f(s)ds).

As the set-valued integral fol G(t,s)I'(s)ds (t € [0,1]) is norm compact, (14)
shows that the sequence (v,(.)) = (fo1 G(-,s)fn(s)ds) converges pointwise
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to v( fo s)ds, for E endowed with the strong topology. At this
pomt, it is Worth mentlonmg that the sequence (0,,(.)) = ( 01 %(., s)fn(s)ds)
converges pointwise to o(.), for E' endowed with the strong topology, using
as above the weak convergence of (f,) and the norm compactness of the set-
valued integral fo 9G (¢ 5)I'(s)ds. Hence (v,) converges in X to a mapping

w where

1
w(t) :/0 G(t,s)f(s)ds, Vte[0,1]

and w(t) = ¢(t) for all ¢ € [—r,0]. This says that Au is compact in X.

Next, we show that A is a compact operator, that is, A maps bounded
sets into relatively compact sets in X. Let S be a bounded set in X and let
u € S, for each v € Au there exists f € Sk(u) such that

1
= / G(t,s)f(s)ds, Vte[0,1]
0
and v(t) = ¢(t) for all t € [—r,0]. Observe that for all ¢,¢" € [0, 1]

lot) — ot H</ G(t,5) — G(t', )] I (5)ds

/ Gt 5) — G(t', )| |k(s)ds,

and

oG oG

lo() = o(t)] < o7 (1) = 57 (', 9)| [k (s)lds.

The function G is continuous on the compact set [0, 1] x [0, 1], so it is uni-
formly continuous there. In addition, k € L}([0,1]), then, the right-hand
side of the above inequalities tends to 0 as t — t’. We conclude that A(S)
and {0 : v e A(S)} are equicontinuous in Cg([0,1]). Since ¢ € Cg([—r,0])
we get the equicontinuity of A(S) in X. Further, for each ¢ € [—r, 1] and
each 7 € [0, 1], the sets A(S)(t) = {v(t)/ v € A(S)} and {v(r)/ v € A(S)}
are relatively compact in E because they are included in the norm compact
sets fol G(t,s)I'(s)ds and fol 9 (¢, s)I'(s)ds, respectively. An application of
the Arzela-Ascoli theorem implies that A(S) is relatively compact in X and
hence A is compact.
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Next, we prove that the graph of A, gph(A) = {(u,v) € X x X/ v € Au}
is closed. Let (up,v,) be a sequence of gph(A) converging uniformly to
(u,v) € X x X with respect to || - [|x. Since v, € Au,, for each n there
exists fn, € Sk(u,) C Sk such that

1
t) :/0 G(t,s)fn(s)ds, Vte[0,1]

and vy, (t) = p(t) for all t € [—r,0]. As Si is weakly compact in LL ([0, 1]), we
may extract from (f,) a subsequence (that we do note relabel) converging
o(LL,L%) to a mapping f € Si.

Observe that f,,(t) € F(t,un(t), un(h(t)),u,(t)). Since ||u, — uljx — 0
and F(t,.,.,.) is upper semicontinuous on E x E x E with convex com-
pact values we conclude that f(t) € F(t,u(t),u(h(t)),u(t)), using a closure
type theorem ( see [9]). Equivalently, f € Sk(u). On the other hand,
repeatmg the arguments glven above, it is not difficult to see that the se-

quence ( fo (s)ds) converges pointwise to fo ,8)f(s)ds
and that the sequence (vn()) = 01 %f(., 8) fn(s)ds) converges pomtwise to

01 %(.,s) f(s)ds, for E endowed with the strong topology. As (v,) con-

verges to v in (X, || - [|x) we get
1
= / G(t,s)f(s)ds, Vte[0,1]
0

and v(t) = p(t) for all t € [—r,0]. This shows that .4 has a closed graph and
hence it is an upper semicontinuous operator on X. Finally, we show that
there exists an R > 0 such that the a priori estimate

ueXu (0<A<1)=|u]| <R
holds. We have
u € Mu < there exists f € Sk(u) C S&

such that
—)\/Gts ds, Vte [0,1]

u(t) = Ap(t), Vt e [—r0].
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For each t € [0, 1], using relation (6) and the assumption over I', we have

1
[u(®)]l S/O Gt ) | F(s)lds,

1
5/0 |k(s)lds = Ikl o,1))

and

oG

¢ (&) If()llds < 11kl o,

1
la(t)]| < /0

On the other hand, for each ¢ € [—r, 0] we have

[u@®)ll = Ao < llellcp(—rop-

Taking the above inequalities into account, we obtain

Jullx < mas (1]l g0,y 1 ello rop) = B

Hence by the conclusion of Theorem 2.1, A has a fixed point in the ball
B(0, R), what, in turn, means that this point is a solution in X to our
boundary value problem (P,). ]

To end the paper, we prove below that under suitable Lipschitz assumption
on the second member, the solution set of (P,) is a retract of X. Compare
with Theorem 1 in [2], and Theorem 5 in [12] in which the authors deal with
nonconvex differential inclusions and Theorem 2 in [2] in the convex case.
See also [3].

Theorem 2.3. Under the hypotheses of Theorem 2.2, if we replace the upper
semicontinuity assumption on F(t,-,-,-) by the condition

( ) H(F(t7x17y17zl)vF(t7$27y27z2))
*

< killzy — @2l + kallyr — y2l + ksllz1 — 2|

for all (t,x1,y1,21), (t,x2,y2,22) € [0,1] X E x E x E, where ki, ks, ks are
positive constants satisfying ki1 + ko + ks < 1. Then the solution set of the
problem (P,) is a retract of X.
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Proof. The idea of proof comes from ([2], Theorem 2). Let us denote
by X(p) the solution set of (P,). By virtue of the proof of Theorem 2.2,
u € X(p) iff u € Au. Let us prove that A is a contraction. Let uq,uy €
X and v; € Aul, then v; = ¢ on [—r,0] and there exists f1 € Sp(u;)
such that vi(t) = fo (t,s)f1(s)ds, for all t € [0,1]. We have fi(t) €
F(t,ul(t),ul(h(t)) ul(t)), as F'is compact valued and F'(-,ua(-),uz(h(")),
U2(+)) is measurable, the multifunction H defined from [0, 1] into E by

H(t) = {w € F(t,uz(t),ua(h(t)), ua(t)) :
1£1(t) = wll = d(f1(t), F(t, ua(t), uz(h(t)), (1)) a.e}

is also measurable with nonempty closed values. In view of the existence
theorem of measurable selections (See [9]), there is a measurable mapping
f2 :10,1] — E such that fo(t) € H(t) for all ¢t € [0,1]. This yields fa(t) €
F(t,ua(t), ua(h(t)),u2(t)) and
(15) (/1) = fo@) = d(f1(2), F (¢, ua(t), uz(h(1)), 42(t))) a.e on [0,1].
Let us define the mapping ve on [—r, 1] by

©o(t), Vte|[-r0]

/Gtsfg ds, Yt e[0,1].

Clearly, vo € Augy. For every t € [0, 1] we have

/ 11(s) — fals) ds.

From this, (15) and the assumption (x), for every ¢ € [0, 1] we obtain

[v1(t) — v2(t)]| = H/OlG(t,S)(fﬂ ) — fa(s))ds

[[01(2) = va(B)]]
1

< ; 1f1(s) — f2(s)||ds

1
- /0 A(F1(5), F (5, un(5), ua(h(s)), ia(s)))ds
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< [ P15 ) () a5, v 06, 6
</ (e (s) — wa (] + Rallun () — wa A + Ralla(5) — aia(s) )
</ (el — sl + Fallur — wallx + Bl — ugllx)ds
= (k1 + ko + k3)|Jur — uz||x.
Consequently,

(16)  [lv1 = valley(=r1)) = llv1 = v2llcg o) < (k1 + k2 + k3)|lur — uz|x.

On the other hand, using Lemma 2.1, we have

Loa

lou(t) — vat)] = H 2 ) - Ralo)as

1
ot S/O | f1(s) — fa(s)||ds.

By repeating the same arguments, we obtain
(17) 01 = B2llcp o < (k1 + ke + ks)llur — uz|[x.
The inequalities (16) and (17) give

lvr —vallx < (k1 + ko + k3)[Jur — ua|/x.
Then we get

d(v1, Aug) = UQiGIﬁUQ o1 — va|lx < (k1 + k2 + k3)|lur — ua||x,

and

sup d(’Ul,AUQ) < (kil + ko + kg)HUl — u2||X
v1 €EAu
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By similar computations and by interchanging the role of w1 and us, we have

sup d(vz, Auy) < (ky + ko + k3)llur — ual|x.
vaEAu2

Hence we obtain
H(AU1,A’LL2) < (kl + ko + kg)Hul — UQHX

with (k1 + k2 + k3) < 1, proving that A is a contraction in X. By a result
of Ricceri [19], the set

Fix(A) ={ueX: ue Au}

is a retract of X. It is clear that Fix(A) = X'(p). This shows that the
solution set of (P,) is a retract of X and the proof of the theorem is complete.
|
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